Reverse Brascamp–Lieb inequality and the dual Bollobás–Thomason inequality
We prove that if f : R n → [ 0 , ∞ ) is an integrable log-concave function with f ( 0 ) = 1 and F 1 , … , F r are linear subspaces of R n such that s I n = ∑ i = 1 r c i P i where I n is the identity operator and P i is the orthogonal projection onto F i , then n n ∫ R n f ( y ) n d y ⩾ ∏ i = 1 r ∫...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2019-03, Vol.112 (3), p.293-304 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that if
f
:
R
n
→
[
0
,
∞
)
is an integrable log-concave function with
f
(
0
)
=
1
and
F
1
,
…
,
F
r
are linear subspaces of
R
n
such that
s
I
n
=
∑
i
=
1
r
c
i
P
i
where
I
n
is the identity operator and
P
i
is the orthogonal projection onto
F
i
, then
n
n
∫
R
n
f
(
y
)
n
d
y
⩾
∏
i
=
1
r
∫
F
i
f
(
x
i
)
d
x
i
c
i
/
s
.
As an application we obtain the dual version of the Bollobás–Thomason inequality: if
K
is a convex body in
R
n
with
0
∈
int
(
K
)
and
(
σ
1
,
…
,
σ
r
)
is an
s
-uniform cover of [
n
], then
|
K
|
s
⩾
1
(
n
!
)
s
∏
i
=
1
r
|
σ
i
|
!
∏
i
=
1
r
|
K
∩
F
i
|
.
This is a sharp generalization of Meyer’s dual Loomis–Whitney inequality. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-018-1262-1 |