Parameterisations of slow invariant manifolds: application to a spray ignition and combustion model
A wide range of dynamic models, including those of heating, evaporation and ignition processes in fuel sprays, is characterised by large differences in the rates of change of variables. Invariant manifold theory is an effective technique for investigation of these systems. In constructing the asympt...
Gespeichert in:
Veröffentlicht in: | Journal of engineering mathematics 2019-02, Vol.114 (1), p.1-17 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of engineering mathematics |
container_volume | 114 |
creator | Sazhin, Sergei S. Shchepakina, Elena Sobolev, Vladimir |
description | A wide range of dynamic models, including those of heating, evaporation and ignition processes in fuel sprays, is characterised by large differences in the rates of change of variables. Invariant manifold theory is an effective technique for investigation of these systems. In constructing the asymptotic expansions of slow invariant manifolds, it is commonly assumed that a limiting algebraic equation allows one to find a slow surface explicitly. This is not always possible due to the fact that the degenerate equation for this surface (small parameter equal to zero) is either a high degree polynomial or transcendental. In many problems, however, the slow surface can be described in a parametric form. In this case, the slow invariant manifold can be found in parametric form using asymptotic expansions. If this is not possible, it is necessary to use an implicit presentation of the slow surface and obtain asymptotic representations for the slow invariant manifold in an implicit form. The results of development of the mathematical theory of these approaches and the applications of this theory to some examples related to modelling combustion processes, including those in sprays, are presented. |
doi_str_mv | 10.1007/s10665-018-9976-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2185101146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2185101146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-906b9766aab65004196c278513513d69dc18eb1d592e7365ba0b8cd76a5918d33</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9FJ06aNN1n8Bwt60HOYJumSpW1q0lX89na3gidhYJjw3pvMj5BLDtccoLxJHKQsGPCKKVVKlh-RBS9KwbISxDFZAGQZg0qIU3KW0hYAVJVnC2JeMWLnRhd9wtGHPtHQ0NSGL-r7T4we-5F22PsmtDbdUhyG1puDko6BIk1DxG_qN70_vGFvqQldvUuHsQvWtefkpME2uYvfviTvD_dvqye2fnl8Xt2tmRGFGpkCWU9fl4i1LAByrqTJyqrgYiorlTW8cjW3hcpcKWRRI9SVsaXEQvHKCrEkV3PuEMPHzqVRb8Mu9tNKnfEpBzjP5aTis8rEkFJ0jR6i7zB-aw56z1LPLPXEUu9Z6nzyZLNnutb3Gxf_kv83_QCKT3d9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185101146</pqid></control><display><type>article</type><title>Parameterisations of slow invariant manifolds: application to a spray ignition and combustion model</title><source>SpringerLink Journals</source><creator>Sazhin, Sergei S. ; Shchepakina, Elena ; Sobolev, Vladimir</creator><creatorcontrib>Sazhin, Sergei S. ; Shchepakina, Elena ; Sobolev, Vladimir</creatorcontrib><description>A wide range of dynamic models, including those of heating, evaporation and ignition processes in fuel sprays, is characterised by large differences in the rates of change of variables. Invariant manifold theory is an effective technique for investigation of these systems. In constructing the asymptotic expansions of slow invariant manifolds, it is commonly assumed that a limiting algebraic equation allows one to find a slow surface explicitly. This is not always possible due to the fact that the degenerate equation for this surface (small parameter equal to zero) is either a high degree polynomial or transcendental. In many problems, however, the slow surface can be described in a parametric form. In this case, the slow invariant manifold can be found in parametric form using asymptotic expansions. If this is not possible, it is necessary to use an implicit presentation of the slow surface and obtain asymptotic representations for the slow invariant manifold in an implicit form. The results of development of the mathematical theory of these approaches and the applications of this theory to some examples related to modelling combustion processes, including those in sprays, are presented.</description><identifier>ISSN: 0022-0833</identifier><identifier>EISSN: 1573-2703</identifier><identifier>DOI: 10.1007/s10665-018-9976-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Asymptotic series ; Combustion ; Computational Mathematics and Numerical Analysis ; Dynamic models ; Fuel sprays ; Ignition ; Invariants ; Mathematical and Computational Engineering ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Polynomials ; Sprayers ; System effectiveness ; Theoretical and Applied Mechanics</subject><ispartof>Journal of engineering mathematics, 2019-02, Vol.114 (1), p.1-17</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-906b9766aab65004196c278513513d69dc18eb1d592e7365ba0b8cd76a5918d33</citedby><cites>FETCH-LOGICAL-c359t-906b9766aab65004196c278513513d69dc18eb1d592e7365ba0b8cd76a5918d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10665-018-9976-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10665-018-9976-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sazhin, Sergei S.</creatorcontrib><creatorcontrib>Shchepakina, Elena</creatorcontrib><creatorcontrib>Sobolev, Vladimir</creatorcontrib><title>Parameterisations of slow invariant manifolds: application to a spray ignition and combustion model</title><title>Journal of engineering mathematics</title><addtitle>J Eng Math</addtitle><description>A wide range of dynamic models, including those of heating, evaporation and ignition processes in fuel sprays, is characterised by large differences in the rates of change of variables. Invariant manifold theory is an effective technique for investigation of these systems. In constructing the asymptotic expansions of slow invariant manifolds, it is commonly assumed that a limiting algebraic equation allows one to find a slow surface explicitly. This is not always possible due to the fact that the degenerate equation for this surface (small parameter equal to zero) is either a high degree polynomial or transcendental. In many problems, however, the slow surface can be described in a parametric form. In this case, the slow invariant manifold can be found in parametric form using asymptotic expansions. If this is not possible, it is necessary to use an implicit presentation of the slow surface and obtain asymptotic representations for the slow invariant manifold in an implicit form. The results of development of the mathematical theory of these approaches and the applications of this theory to some examples related to modelling combustion processes, including those in sprays, are presented.</description><subject>Applications of Mathematics</subject><subject>Asymptotic series</subject><subject>Combustion</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Dynamic models</subject><subject>Fuel sprays</subject><subject>Ignition</subject><subject>Invariants</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Sprayers</subject><subject>System effectiveness</subject><subject>Theoretical and Applied Mechanics</subject><issn>0022-0833</issn><issn>1573-2703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9FJ06aNN1n8Bwt60HOYJumSpW1q0lX89na3gidhYJjw3pvMj5BLDtccoLxJHKQsGPCKKVVKlh-RBS9KwbISxDFZAGQZg0qIU3KW0hYAVJVnC2JeMWLnRhd9wtGHPtHQ0NSGL-r7T4we-5F22PsmtDbdUhyG1puDko6BIk1DxG_qN70_vGFvqQldvUuHsQvWtefkpME2uYvfviTvD_dvqye2fnl8Xt2tmRGFGpkCWU9fl4i1LAByrqTJyqrgYiorlTW8cjW3hcpcKWRRI9SVsaXEQvHKCrEkV3PuEMPHzqVRb8Mu9tNKnfEpBzjP5aTis8rEkFJ0jR6i7zB-aw56z1LPLPXEUu9Z6nzyZLNnutb3Gxf_kv83_QCKT3d9</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Sazhin, Sergei S.</creator><creator>Shchepakina, Elena</creator><creator>Sobolev, Vladimir</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190215</creationdate><title>Parameterisations of slow invariant manifolds: application to a spray ignition and combustion model</title><author>Sazhin, Sergei S. ; Shchepakina, Elena ; Sobolev, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-906b9766aab65004196c278513513d69dc18eb1d592e7365ba0b8cd76a5918d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Asymptotic series</topic><topic>Combustion</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Dynamic models</topic><topic>Fuel sprays</topic><topic>Ignition</topic><topic>Invariants</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Sprayers</topic><topic>System effectiveness</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sazhin, Sergei S.</creatorcontrib><creatorcontrib>Shchepakina, Elena</creatorcontrib><creatorcontrib>Sobolev, Vladimir</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sazhin, Sergei S.</au><au>Shchepakina, Elena</au><au>Sobolev, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameterisations of slow invariant manifolds: application to a spray ignition and combustion model</atitle><jtitle>Journal of engineering mathematics</jtitle><stitle>J Eng Math</stitle><date>2019-02-15</date><risdate>2019</risdate><volume>114</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0022-0833</issn><eissn>1573-2703</eissn><abstract>A wide range of dynamic models, including those of heating, evaporation and ignition processes in fuel sprays, is characterised by large differences in the rates of change of variables. Invariant manifold theory is an effective technique for investigation of these systems. In constructing the asymptotic expansions of slow invariant manifolds, it is commonly assumed that a limiting algebraic equation allows one to find a slow surface explicitly. This is not always possible due to the fact that the degenerate equation for this surface (small parameter equal to zero) is either a high degree polynomial or transcendental. In many problems, however, the slow surface can be described in a parametric form. In this case, the slow invariant manifold can be found in parametric form using asymptotic expansions. If this is not possible, it is necessary to use an implicit presentation of the slow surface and obtain asymptotic representations for the slow invariant manifold in an implicit form. The results of development of the mathematical theory of these approaches and the applications of this theory to some examples related to modelling combustion processes, including those in sprays, are presented.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10665-018-9976-4</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0833 |
ispartof | Journal of engineering mathematics, 2019-02, Vol.114 (1), p.1-17 |
issn | 0022-0833 1573-2703 |
language | eng |
recordid | cdi_proquest_journals_2185101146 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Asymptotic series Combustion Computational Mathematics and Numerical Analysis Dynamic models Fuel sprays Ignition Invariants Mathematical and Computational Engineering Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Polynomials Sprayers System effectiveness Theoretical and Applied Mechanics |
title | Parameterisations of slow invariant manifolds: application to a spray ignition and combustion model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameterisations%20of%20slow%20invariant%20manifolds:%20application%20to%20a%20spray%20ignition%20and%20combustion%20model&rft.jtitle=Journal%20of%20engineering%20mathematics&rft.au=Sazhin,%20Sergei%20S.&rft.date=2019-02-15&rft.volume=114&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0022-0833&rft.eissn=1573-2703&rft_id=info:doi/10.1007/s10665-018-9976-4&rft_dat=%3Cproquest_cross%3E2185101146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185101146&rft_id=info:pmid/&rfr_iscdi=true |