Parameterisations of slow invariant manifolds: application to a spray ignition and combustion model

A wide range of dynamic models, including those of heating, evaporation and ignition processes in fuel sprays, is characterised by large differences in the rates of change of variables. Invariant manifold theory is an effective technique for investigation of these systems. In constructing the asympt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mathematics 2019-02, Vol.114 (1), p.1-17
Hauptverfasser: Sazhin, Sergei S., Shchepakina, Elena, Sobolev, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 1
container_title Journal of engineering mathematics
container_volume 114
creator Sazhin, Sergei S.
Shchepakina, Elena
Sobolev, Vladimir
description A wide range of dynamic models, including those of heating, evaporation and ignition processes in fuel sprays, is characterised by large differences in the rates of change of variables. Invariant manifold theory is an effective technique for investigation of these systems. In constructing the asymptotic expansions of slow invariant manifolds, it is commonly assumed that a limiting algebraic equation allows one to find a slow surface explicitly. This is not always possible due to the fact that the degenerate equation for this surface (small parameter equal to zero) is either a high degree polynomial or transcendental. In many problems, however, the slow surface can be described in a parametric form. In this case, the slow invariant manifold can be found in parametric form using asymptotic expansions. If this is not possible, it is necessary to use an implicit presentation of the slow surface and obtain asymptotic representations for the slow invariant manifold in an implicit form. The results of development of the mathematical theory of these approaches and the applications of this theory to some examples related to modelling combustion processes, including those in sprays, are presented.
doi_str_mv 10.1007/s10665-018-9976-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2185101146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2185101146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-906b9766aab65004196c278513513d69dc18eb1d592e7365ba0b8cd76a5918d33</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9FJ06aNN1n8Bwt60HOYJumSpW1q0lX89na3gidhYJjw3pvMj5BLDtccoLxJHKQsGPCKKVVKlh-RBS9KwbISxDFZAGQZg0qIU3KW0hYAVJVnC2JeMWLnRhd9wtGHPtHQ0NSGL-r7T4we-5F22PsmtDbdUhyG1puDko6BIk1DxG_qN70_vGFvqQldvUuHsQvWtefkpME2uYvfviTvD_dvqye2fnl8Xt2tmRGFGpkCWU9fl4i1LAByrqTJyqrgYiorlTW8cjW3hcpcKWRRI9SVsaXEQvHKCrEkV3PuEMPHzqVRb8Mu9tNKnfEpBzjP5aTis8rEkFJ0jR6i7zB-aw56z1LPLPXEUu9Z6nzyZLNnutb3Gxf_kv83_QCKT3d9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185101146</pqid></control><display><type>article</type><title>Parameterisations of slow invariant manifolds: application to a spray ignition and combustion model</title><source>SpringerLink Journals</source><creator>Sazhin, Sergei S. ; Shchepakina, Elena ; Sobolev, Vladimir</creator><creatorcontrib>Sazhin, Sergei S. ; Shchepakina, Elena ; Sobolev, Vladimir</creatorcontrib><description>A wide range of dynamic models, including those of heating, evaporation and ignition processes in fuel sprays, is characterised by large differences in the rates of change of variables. Invariant manifold theory is an effective technique for investigation of these systems. In constructing the asymptotic expansions of slow invariant manifolds, it is commonly assumed that a limiting algebraic equation allows one to find a slow surface explicitly. This is not always possible due to the fact that the degenerate equation for this surface (small parameter equal to zero) is either a high degree polynomial or transcendental. In many problems, however, the slow surface can be described in a parametric form. In this case, the slow invariant manifold can be found in parametric form using asymptotic expansions. If this is not possible, it is necessary to use an implicit presentation of the slow surface and obtain asymptotic representations for the slow invariant manifold in an implicit form. The results of development of the mathematical theory of these approaches and the applications of this theory to some examples related to modelling combustion processes, including those in sprays, are presented.</description><identifier>ISSN: 0022-0833</identifier><identifier>EISSN: 1573-2703</identifier><identifier>DOI: 10.1007/s10665-018-9976-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Asymptotic series ; Combustion ; Computational Mathematics and Numerical Analysis ; Dynamic models ; Fuel sprays ; Ignition ; Invariants ; Mathematical and Computational Engineering ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Polynomials ; Sprayers ; System effectiveness ; Theoretical and Applied Mechanics</subject><ispartof>Journal of engineering mathematics, 2019-02, Vol.114 (1), p.1-17</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-906b9766aab65004196c278513513d69dc18eb1d592e7365ba0b8cd76a5918d33</citedby><cites>FETCH-LOGICAL-c359t-906b9766aab65004196c278513513d69dc18eb1d592e7365ba0b8cd76a5918d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10665-018-9976-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10665-018-9976-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sazhin, Sergei S.</creatorcontrib><creatorcontrib>Shchepakina, Elena</creatorcontrib><creatorcontrib>Sobolev, Vladimir</creatorcontrib><title>Parameterisations of slow invariant manifolds: application to a spray ignition and combustion model</title><title>Journal of engineering mathematics</title><addtitle>J Eng Math</addtitle><description>A wide range of dynamic models, including those of heating, evaporation and ignition processes in fuel sprays, is characterised by large differences in the rates of change of variables. Invariant manifold theory is an effective technique for investigation of these systems. In constructing the asymptotic expansions of slow invariant manifolds, it is commonly assumed that a limiting algebraic equation allows one to find a slow surface explicitly. This is not always possible due to the fact that the degenerate equation for this surface (small parameter equal to zero) is either a high degree polynomial or transcendental. In many problems, however, the slow surface can be described in a parametric form. In this case, the slow invariant manifold can be found in parametric form using asymptotic expansions. If this is not possible, it is necessary to use an implicit presentation of the slow surface and obtain asymptotic representations for the slow invariant manifold in an implicit form. The results of development of the mathematical theory of these approaches and the applications of this theory to some examples related to modelling combustion processes, including those in sprays, are presented.</description><subject>Applications of Mathematics</subject><subject>Asymptotic series</subject><subject>Combustion</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Dynamic models</subject><subject>Fuel sprays</subject><subject>Ignition</subject><subject>Invariants</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Sprayers</subject><subject>System effectiveness</subject><subject>Theoretical and Applied Mechanics</subject><issn>0022-0833</issn><issn>1573-2703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9FJ06aNN1n8Bwt60HOYJumSpW1q0lX89na3gidhYJjw3pvMj5BLDtccoLxJHKQsGPCKKVVKlh-RBS9KwbISxDFZAGQZg0qIU3KW0hYAVJVnC2JeMWLnRhd9wtGHPtHQ0NSGL-r7T4we-5F22PsmtDbdUhyG1puDko6BIk1DxG_qN70_vGFvqQldvUuHsQvWtefkpME2uYvfviTvD_dvqye2fnl8Xt2tmRGFGpkCWU9fl4i1LAByrqTJyqrgYiorlTW8cjW3hcpcKWRRI9SVsaXEQvHKCrEkV3PuEMPHzqVRb8Mu9tNKnfEpBzjP5aTis8rEkFJ0jR6i7zB-aw56z1LPLPXEUu9Z6nzyZLNnutb3Gxf_kv83_QCKT3d9</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Sazhin, Sergei S.</creator><creator>Shchepakina, Elena</creator><creator>Sobolev, Vladimir</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190215</creationdate><title>Parameterisations of slow invariant manifolds: application to a spray ignition and combustion model</title><author>Sazhin, Sergei S. ; Shchepakina, Elena ; Sobolev, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-906b9766aab65004196c278513513d69dc18eb1d592e7365ba0b8cd76a5918d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Asymptotic series</topic><topic>Combustion</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Dynamic models</topic><topic>Fuel sprays</topic><topic>Ignition</topic><topic>Invariants</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Sprayers</topic><topic>System effectiveness</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sazhin, Sergei S.</creatorcontrib><creatorcontrib>Shchepakina, Elena</creatorcontrib><creatorcontrib>Sobolev, Vladimir</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sazhin, Sergei S.</au><au>Shchepakina, Elena</au><au>Sobolev, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameterisations of slow invariant manifolds: application to a spray ignition and combustion model</atitle><jtitle>Journal of engineering mathematics</jtitle><stitle>J Eng Math</stitle><date>2019-02-15</date><risdate>2019</risdate><volume>114</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0022-0833</issn><eissn>1573-2703</eissn><abstract>A wide range of dynamic models, including those of heating, evaporation and ignition processes in fuel sprays, is characterised by large differences in the rates of change of variables. Invariant manifold theory is an effective technique for investigation of these systems. In constructing the asymptotic expansions of slow invariant manifolds, it is commonly assumed that a limiting algebraic equation allows one to find a slow surface explicitly. This is not always possible due to the fact that the degenerate equation for this surface (small parameter equal to zero) is either a high degree polynomial or transcendental. In many problems, however, the slow surface can be described in a parametric form. In this case, the slow invariant manifold can be found in parametric form using asymptotic expansions. If this is not possible, it is necessary to use an implicit presentation of the slow surface and obtain asymptotic representations for the slow invariant manifold in an implicit form. The results of development of the mathematical theory of these approaches and the applications of this theory to some examples related to modelling combustion processes, including those in sprays, are presented.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10665-018-9976-4</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0833
ispartof Journal of engineering mathematics, 2019-02, Vol.114 (1), p.1-17
issn 0022-0833
1573-2703
language eng
recordid cdi_proquest_journals_2185101146
source SpringerLink Journals
subjects Applications of Mathematics
Asymptotic series
Combustion
Computational Mathematics and Numerical Analysis
Dynamic models
Fuel sprays
Ignition
Invariants
Mathematical and Computational Engineering
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Polynomials
Sprayers
System effectiveness
Theoretical and Applied Mechanics
title Parameterisations of slow invariant manifolds: application to a spray ignition and combustion model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameterisations%20of%20slow%20invariant%20manifolds:%20application%20to%20a%20spray%20ignition%20and%20combustion%20model&rft.jtitle=Journal%20of%20engineering%20mathematics&rft.au=Sazhin,%20Sergei%20S.&rft.date=2019-02-15&rft.volume=114&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0022-0833&rft.eissn=1573-2703&rft_id=info:doi/10.1007/s10665-018-9976-4&rft_dat=%3Cproquest_cross%3E2185101146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185101146&rft_id=info:pmid/&rfr_iscdi=true