Parameterisations of slow invariant manifolds: application to a spray ignition and combustion model

A wide range of dynamic models, including those of heating, evaporation and ignition processes in fuel sprays, is characterised by large differences in the rates of change of variables. Invariant manifold theory is an effective technique for investigation of these systems. In constructing the asympt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mathematics 2019-02, Vol.114 (1), p.1-17
Hauptverfasser: Sazhin, Sergei S., Shchepakina, Elena, Sobolev, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A wide range of dynamic models, including those of heating, evaporation and ignition processes in fuel sprays, is characterised by large differences in the rates of change of variables. Invariant manifold theory is an effective technique for investigation of these systems. In constructing the asymptotic expansions of slow invariant manifolds, it is commonly assumed that a limiting algebraic equation allows one to find a slow surface explicitly. This is not always possible due to the fact that the degenerate equation for this surface (small parameter equal to zero) is either a high degree polynomial or transcendental. In many problems, however, the slow surface can be described in a parametric form. In this case, the slow invariant manifold can be found in parametric form using asymptotic expansions. If this is not possible, it is necessary to use an implicit presentation of the slow surface and obtain asymptotic representations for the slow invariant manifold in an implicit form. The results of development of the mathematical theory of these approaches and the applications of this theory to some examples related to modelling combustion processes, including those in sprays, are presented.
ISSN:0022-0833
1573-2703
DOI:10.1007/s10665-018-9976-4