[Formula Omitted]: Lowering the Bound of Misclassification Rate for Sparse Linear Discriminant Analysis via Model Debiasing

Linear discriminant analysis (LDA) is a well-known technique for linear classification, feature extraction, and dimension reduction. To improve the accuracy of LDA under the high dimension low sample size (HDLSS) settings, shrunken estimators, such as Graphical Lasso, can be used to strike a balance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2019-01, Vol.30 (3), p.707
Hauptverfasser: Xiong, Haoyi, Cheng, Wei, Bian, Jiang, Hu, Wenqing, Sun, Zeyi, Guo, Zhishan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Linear discriminant analysis (LDA) is a well-known technique for linear classification, feature extraction, and dimension reduction. To improve the accuracy of LDA under the high dimension low sample size (HDLSS) settings, shrunken estimators, such as Graphical Lasso, can be used to strike a balance between biases and variances. Although the estimator with induced sparsity obtains a faster convergence rate, however, the introduced bias may also degrade the performance. In this paper, we theoretically analyze how the sparsity and the convergence rate of the precision matrix (also known as inverse covariance matrix) estimator would affect the classification accuracy by proposing an analytic model on the upper bound of an LDA misclassification rate. Guided by the model, we propose a novel classifier, [Formula Omitted], which improves classification accuracy through debiasing . Theoretical analysis shows that [Formula Omitted] possesses a reduced upper bound of misclassification rate and better asymptotic properties than sparse LDA (SDA). We conduct experiments on both synthetic datasets and real application datasets to confirm the correctness of our theoretical analysis and demonstrate the superiority of [Formula Omitted] over LDA, SDA, and other downstream competitors under HDLSS settings.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2018.2846783