Quasilinear generalized parabolic Anderson model equation
We present in this note a local in time well-posedness result for the singular 2-dimensional quasilinear generalized parabolic Anderson model equation ∂ t u - a ( u ) Δ u = g ( u ) ξ . The key idea of our approach is a simple transformation of the equation which allows to treat the problem as a semi...
Gespeichert in:
Veröffentlicht in: | Stochastic partial differential equations : analysis and computations 2019-03, Vol.7 (1), p.40-63 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present in this note a local in time well-posedness result for the singular 2-dimensional quasilinear generalized parabolic Anderson model equation
∂
t
u
-
a
(
u
)
Δ
u
=
g
(
u
)
ξ
.
The key idea of our approach is a simple transformation of the equation which allows to treat the problem as a semilinear problem. The analysis is done within the elementary setting of paracontrolled calculus. |
---|---|
ISSN: | 2194-0401 2194-041X |
DOI: | 10.1007/s40072-018-0121-1 |