Gene selection for enhanced classification on microarray data using a weighted k-NN based algorithm

Feature selection is a common solution to microarray analysis. Previous approaches either select features based on classical statistical tests that can be tuned up with a classifier, or using regularization penalties incorporated in the cost function. Here we propose to use a feature ranking and wei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligent data analysis 2019-01, Vol.23 (1), p.241-253
Hauptverfasser: Ventura-Molina, Elías, Alarcón-Paredes, Antonio, Aldape-Pérez, Mario, Yáñez-Márquez, Cornelio, Adolfo Alonso, Gustavo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 1
container_start_page 241
container_title Intelligent data analysis
container_volume 23
creator Ventura-Molina, Elías
Alarcón-Paredes, Antonio
Aldape-Pérez, Mario
Yáñez-Márquez, Cornelio
Adolfo Alonso, Gustavo
description Feature selection is a common solution to microarray analysis. Previous approaches either select features based on classical statistical tests that can be tuned up with a classifier, or using regularization penalties incorporated in the cost function. Here we propose to use a feature ranking and weighting scheme instead, which combines statistical techniques with a weighted k-NN classifier using a modified forward selection procedure. We demonstrate that classification accuracy of our proposal outperforms existing methods on a range of public microarray gene expression datasets. The proposed method is also compared to state-of-the-art feature selection algorithms by means of the Friedman test. Although a bunch of feature selection techniques has been used for genomic data, the experimental results show the classification superiority of our method on most of the present gene expression datasets.
doi_str_mv 10.3233/IDA-173720
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2184594506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2184594506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-2d15cd40c3e05ee386d75a2e8624db03af645a66c6af2b67c748e04b253879603</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKsXP0HAm7Ca_0mPpWoVSr0oeFtms7Nt6na3Jluk395ohYF5MG_mMT9Crjm7k0LK-5eHacGttIKdkBHXlheKC3eaNXOuUMZ-nJOLlDaMMSWYGhE_xw5pwhb9EPqONn2k2K2h81hT30JKoQke_ma5tsHHHmKEA61hALpPoVtRoN8YVushr3wWyyWtIGUJ7aqPYVhvL8lZA23Cq_8-Ju9Pj2-z52LxOn-ZTReFF3oyFKLm2teKeYlMI0pnaqtBoDNC1RWT0BilwRhvoBGVsd4qh0xVQktnJ4bJMbk53t3F_muPaSg3_T52ObIU3Ck9UZqZ7Lo9uvInKUVsyl0MW4iHkrPyF2KZIZZHiPIH-hxj9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184594506</pqid></control><display><type>article</type><title>Gene selection for enhanced classification on microarray data using a weighted k-NN based algorithm</title><source>EBSCOhost Business Source Complete</source><creator>Ventura-Molina, Elías ; Alarcón-Paredes, Antonio ; Aldape-Pérez, Mario ; Yáñez-Márquez, Cornelio ; Adolfo Alonso, Gustavo</creator><creatorcontrib>Ventura-Molina, Elías ; Alarcón-Paredes, Antonio ; Aldape-Pérez, Mario ; Yáñez-Márquez, Cornelio ; Adolfo Alonso, Gustavo</creatorcontrib><description>Feature selection is a common solution to microarray analysis. Previous approaches either select features based on classical statistical tests that can be tuned up with a classifier, or using regularization penalties incorporated in the cost function. Here we propose to use a feature ranking and weighting scheme instead, which combines statistical techniques with a weighted k-NN classifier using a modified forward selection procedure. We demonstrate that classification accuracy of our proposal outperforms existing methods on a range of public microarray gene expression datasets. The proposed method is also compared to state-of-the-art feature selection algorithms by means of the Friedman test. Although a bunch of feature selection techniques has been used for genomic data, the experimental results show the classification superiority of our method on most of the present gene expression datasets.</description><identifier>ISSN: 1088-467X</identifier><identifier>EISSN: 1571-4128</identifier><identifier>DOI: 10.3233/IDA-173720</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Classification ; Classifiers ; Datasets ; Gene expression ; Regularization ; State of the art ; Statistical tests</subject><ispartof>Intelligent data analysis, 2019-01, Vol.23 (1), p.241-253</ispartof><rights>Copyright IOS Press BV 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-2d15cd40c3e05ee386d75a2e8624db03af645a66c6af2b67c748e04b253879603</citedby><cites>FETCH-LOGICAL-c259t-2d15cd40c3e05ee386d75a2e8624db03af645a66c6af2b67c748e04b253879603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ventura-Molina, Elías</creatorcontrib><creatorcontrib>Alarcón-Paredes, Antonio</creatorcontrib><creatorcontrib>Aldape-Pérez, Mario</creatorcontrib><creatorcontrib>Yáñez-Márquez, Cornelio</creatorcontrib><creatorcontrib>Adolfo Alonso, Gustavo</creatorcontrib><title>Gene selection for enhanced classification on microarray data using a weighted k-NN based algorithm</title><title>Intelligent data analysis</title><description>Feature selection is a common solution to microarray analysis. Previous approaches either select features based on classical statistical tests that can be tuned up with a classifier, or using regularization penalties incorporated in the cost function. Here we propose to use a feature ranking and weighting scheme instead, which combines statistical techniques with a weighted k-NN classifier using a modified forward selection procedure. We demonstrate that classification accuracy of our proposal outperforms existing methods on a range of public microarray gene expression datasets. The proposed method is also compared to state-of-the-art feature selection algorithms by means of the Friedman test. Although a bunch of feature selection techniques has been used for genomic data, the experimental results show the classification superiority of our method on most of the present gene expression datasets.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Datasets</subject><subject>Gene expression</subject><subject>Regularization</subject><subject>State of the art</subject><subject>Statistical tests</subject><issn>1088-467X</issn><issn>1571-4128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE9LAzEQxYMoWKsXP0HAm7Ca_0mPpWoVSr0oeFtms7Nt6na3Jluk395ohYF5MG_mMT9Crjm7k0LK-5eHacGttIKdkBHXlheKC3eaNXOuUMZ-nJOLlDaMMSWYGhE_xw5pwhb9EPqONn2k2K2h81hT30JKoQke_ma5tsHHHmKEA61hALpPoVtRoN8YVushr3wWyyWtIGUJ7aqPYVhvL8lZA23Cq_8-Ju9Pj2-z52LxOn-ZTReFF3oyFKLm2teKeYlMI0pnaqtBoDNC1RWT0BilwRhvoBGVsd4qh0xVQktnJ4bJMbk53t3F_muPaSg3_T52ObIU3Ck9UZqZ7Lo9uvInKUVsyl0MW4iHkrPyF2KZIZZHiPIH-hxj9Q</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Ventura-Molina, Elías</creator><creator>Alarcón-Paredes, Antonio</creator><creator>Aldape-Pérez, Mario</creator><creator>Yáñez-Márquez, Cornelio</creator><creator>Adolfo Alonso, Gustavo</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>Gene selection for enhanced classification on microarray data using a weighted k-NN based algorithm</title><author>Ventura-Molina, Elías ; Alarcón-Paredes, Antonio ; Aldape-Pérez, Mario ; Yáñez-Márquez, Cornelio ; Adolfo Alonso, Gustavo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-2d15cd40c3e05ee386d75a2e8624db03af645a66c6af2b67c748e04b253879603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Datasets</topic><topic>Gene expression</topic><topic>Regularization</topic><topic>State of the art</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ventura-Molina, Elías</creatorcontrib><creatorcontrib>Alarcón-Paredes, Antonio</creatorcontrib><creatorcontrib>Aldape-Pérez, Mario</creatorcontrib><creatorcontrib>Yáñez-Márquez, Cornelio</creatorcontrib><creatorcontrib>Adolfo Alonso, Gustavo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Intelligent data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ventura-Molina, Elías</au><au>Alarcón-Paredes, Antonio</au><au>Aldape-Pérez, Mario</au><au>Yáñez-Márquez, Cornelio</au><au>Adolfo Alonso, Gustavo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene selection for enhanced classification on microarray data using a weighted k-NN based algorithm</atitle><jtitle>Intelligent data analysis</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>23</volume><issue>1</issue><spage>241</spage><epage>253</epage><pages>241-253</pages><issn>1088-467X</issn><eissn>1571-4128</eissn><abstract>Feature selection is a common solution to microarray analysis. Previous approaches either select features based on classical statistical tests that can be tuned up with a classifier, or using regularization penalties incorporated in the cost function. Here we propose to use a feature ranking and weighting scheme instead, which combines statistical techniques with a weighted k-NN classifier using a modified forward selection procedure. We demonstrate that classification accuracy of our proposal outperforms existing methods on a range of public microarray gene expression datasets. The proposed method is also compared to state-of-the-art feature selection algorithms by means of the Friedman test. Although a bunch of feature selection techniques has been used for genomic data, the experimental results show the classification superiority of our method on most of the present gene expression datasets.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/IDA-173720</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1088-467X
ispartof Intelligent data analysis, 2019-01, Vol.23 (1), p.241-253
issn 1088-467X
1571-4128
language eng
recordid cdi_proquest_journals_2184594506
source EBSCOhost Business Source Complete
subjects Algorithms
Classification
Classifiers
Datasets
Gene expression
Regularization
State of the art
Statistical tests
title Gene selection for enhanced classification on microarray data using a weighted k-NN based algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20selection%20for%20enhanced%20classification%20on%20microarray%20data%20using%20a%20weighted%20k-NN%20based%20algorithm&rft.jtitle=Intelligent%20data%20analysis&rft.au=Ventura-Molina,%20El%C3%ADas&rft.date=2019-01-01&rft.volume=23&rft.issue=1&rft.spage=241&rft.epage=253&rft.pages=241-253&rft.issn=1088-467X&rft.eissn=1571-4128&rft_id=info:doi/10.3233/IDA-173720&rft_dat=%3Cproquest_cross%3E2184594506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184594506&rft_id=info:pmid/&rfr_iscdi=true