Gene selection for enhanced classification on microarray data using a weighted k-NN based algorithm

Feature selection is a common solution to microarray analysis. Previous approaches either select features based on classical statistical tests that can be tuned up with a classifier, or using regularization penalties incorporated in the cost function. Here we propose to use a feature ranking and wei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligent data analysis 2019-01, Vol.23 (1), p.241-253
Hauptverfasser: Ventura-Molina, Elías, Alarcón-Paredes, Antonio, Aldape-Pérez, Mario, Yáñez-Márquez, Cornelio, Adolfo Alonso, Gustavo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Feature selection is a common solution to microarray analysis. Previous approaches either select features based on classical statistical tests that can be tuned up with a classifier, or using regularization penalties incorporated in the cost function. Here we propose to use a feature ranking and weighting scheme instead, which combines statistical techniques with a weighted k-NN classifier using a modified forward selection procedure. We demonstrate that classification accuracy of our proposal outperforms existing methods on a range of public microarray gene expression datasets. The proposed method is also compared to state-of-the-art feature selection algorithms by means of the Friedman test. Although a bunch of feature selection techniques has been used for genomic data, the experimental results show the classification superiority of our method on most of the present gene expression datasets.
ISSN:1088-467X
1571-4128
DOI:10.3233/IDA-173720