Relaxations of AC Maximal Load Delivery for Severe Contingency Analysis

This work considers the task of finding an ac-feasible operating point of a severely damaged transmission network while ensuring that a maximal amount of active power loads can be delivered. This AC maximal load delivery (AC-MLD) task is a nonconvex nonlinear optimization problem that is incredibly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2019-03, Vol.34 (2), p.1450-1458
Hauptverfasser: Coffrin, Carleton, Bent, Russell, Tasseff, Byron, Sundar, Kaarthik, Backhaus, Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work considers the task of finding an ac-feasible operating point of a severely damaged transmission network while ensuring that a maximal amount of active power loads can be delivered. This AC maximal load delivery (AC-MLD) task is a nonconvex nonlinear optimization problem that is incredibly challenging to solve on large-scale transmission system data sets. This work demonstrates that convex relaxations of the AC-MLD problem provide a reliable and scalable method for finding high-quality bounds on the amount of active power that can be delivered in the AC-MLD problem. To demonstrate their effectiveness, the solution methods proposed in this work are rigorously evaluated on 1000 N-k scenarios on seven power networks ranging in size from 70 to 6000 buses. The most effective relaxation of the AC-MLD problem converges in less than 20 seconds on commodity computing hardware for all 7000 of the scenarios considered.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2018.2876507