Investigation and Modeling of Large Barkhausen Jumps Dynamics in Low-Power Fluxgate Magnetometers

Large Barkhausen jumps occur in low-power fluxgates output and seriously affect the signal fidelity and therefore the magnetometer functionality. In this paper, we investigate the occurrence of DC jumps in two types of fluxgates, parallel and orthogonal. We present a new model for the jumps phenomen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2019-03, Vol.19 (6), p.2105-2112
Hauptverfasser: Weiss, Eyal, Alimi, Roger, Ivry, Amir, Fisher, Elad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large Barkhausen jumps occur in low-power fluxgates output and seriously affect the signal fidelity and therefore the magnetometer functionality. In this paper, we investigate the occurrence of DC jumps in two types of fluxgates, parallel and orthogonal. We present a new model for the jumps phenomenon. This model is based on the reversal dynamics of magnetic domains in the core metallurgical super-structures. We expand the model to explain how and why the jumps subside in time. We show that although the jumps rate decays exponentially in time, the process never completely stops. The understanding of DC jumps dynamics may be utilized in research and development of low-power magnetic sensors. It may be used to characterize and standardize the quality of magnetic sensors cores and used to screen faulty cores that exhibit exceptionally high jump rate that may affect signal fidelity. Mitigating the jumps in both parallel and orthogonal low-power fluxgates is crucial for low-noise magnetic measurement systems.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2018.2885779