Optimized Packing Clusters of Objects in a Rectangular Container
A packing (layout) problem for a number of clusters (groups) composed of convex objects (e.g., circles, ellipses, or convex polygons) is considered. The clusters have to be packed into a given rectangular container subject to nonoverlapping between objects within a cluster. Each cluster is represent...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2019-01, Vol.2019 (2019), p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A packing (layout) problem for a number of clusters (groups) composed of convex objects (e.g., circles, ellipses, or convex polygons) is considered. The clusters have to be packed into a given rectangular container subject to nonoverlapping between objects within a cluster. Each cluster is represented by the convex hull of objects that form the cluster. Two clusters are said to be nonoverlapping if their convex hulls do not overlap. A cluster is said to be entirely in the container if so is its convex hull. All objects in the cluster have the same shape (different sizes are allowed) and can be continuously translated and rotated. The objective of optimized packing is constructing a maximum sparse layout for clusters subject to nonoverlapping and containment conditions for clusters and objects. Here the term sparse means that clusters are sufficiently distant one from another. New quasi-phi-functions and phi-functions to describe analytically nonoverlapping, containment and distance constraints for clusters are introduced. The layout problem is then formulated as a nonlinear nonconvex continuous problem. A novel algorithm to search for locally optimal solutions is developed. Computational results are provided to demonstrate the efficiency of our approach. This research is motivated by a container-loading problem; however similar problems arise naturally in many other packing/cutting/clustering issues. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2019/4136430 |