A novel nanoporous bismuth electrode sensor for in situ heavy metal detection

A novel modified nanoporous bismuth electrode (modified-NPBiE) sensor was prepared by consecutive procedures which consist of bismuth (Bi) and tin (Sn) electroplating, thermal treatment for alloying Bi-Sn film, and selective chemical dealloying of Sn. The newly prepared modified-NPBiE sensor exhibit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2019-03, Vol.298, p.440-448
Hauptverfasser: Hwang, Jae-Hoon, Wang, Xiaochen, Zhao, Daoli, Rex, Matthew M., Cho, Hyoung J., Lee, Woo Hyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel modified nanoporous bismuth electrode (modified-NPBiE) sensor was prepared by consecutive procedures which consist of bismuth (Bi) and tin (Sn) electroplating, thermal treatment for alloying Bi-Sn film, and selective chemical dealloying of Sn. The newly prepared modified-NPBiE sensor exhibited improved lifetime (2.7 times longer than a conventional nanoporous Bi-filmed electrode with over 40 repeated measurements) sensor with lower relative standard deviation (RSD), indicating enhanced stability and reproducibility for heavy metal detection. Using square wave anodic stripping voltammetry (SWASV), two noticeable peaks were observed at −0.65 V and −0.45 V associated with stripping currents of Cd2+ and Pb2+ in 0.1 M acetate buffer solution at pH 4.6, respectively. The calibration curves showed strong correlations with respect to various concentrations of Cd2+ and Pb2+ with the limit of detection (LOD) of 1.3 ppb for Cd2+ and 1.5 ppb for Pb2+. The newly modified-NPBiE sensor was then successfully applied for detecting Cd2+ and Pb2+ in a tap water environment and exhibited an acceptable performance for measuring heavy metals with a good reliability. [Display omitted] •A modified-NPBiE sensor was developed by a separate Bi-Sn electroplating process.•Nanoporous Bi structure after selective Sn etching improved sensor stability.•The modified-NPBiE sensor showed good reproducibility over 40 times of measurements.•The modified-NPBiE sensor successfully measured Cd2+ and Pb2+ in a tap water.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2018.12.122