Fabrication of ultra-thin carbon nanofibers by centrifuged-electrospinning for application in high-rate supercapacitors

The novel technique of centrifuged-electrospinning is employed to fabricate immiscible polyacrylonitrile (PAN)/polymethyl methacrylate (PMMA) polymer fibers, followed by carbonization to form ultra-thin carbon nanofibers (UT-CNF) with 28 ± 11 nm diameters. An additional centrifugal force provides a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2019-02, Vol.296, p.268-275
Hauptverfasser: Chang, Wei-Min, Wang, Cheng-Chien, Chen, Chuh-Yung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The novel technique of centrifuged-electrospinning is employed to fabricate immiscible polyacrylonitrile (PAN)/polymethyl methacrylate (PMMA) polymer fibers, followed by carbonization to form ultra-thin carbon nanofibers (UT-CNF) with 28 ± 11 nm diameters. An additional centrifugal force provides a strong stretching force to stretch the dispersed droplets (PAN) into ultra-thin nanofibers, as confirmed by electron microscopy. This structure presents good electrochemical properties compared to electrospun carbon nanofibers with 126 ± 16 nm diameters. Electrochemical impedance spectroscopy analysis shows enhanced efficient surface areas, which accumulate ions more quickly, resulting in a decrease in the charge distribution and ion diffusion resistance because the reduction in diameter provides a short pore length and large outer surface. Applied to a supercapacitor, galvanostatic charge/discharge analysis gives a maximum specific capacitance of 243 F/g at 1 A/g and capacitance retention of 77.1% at a charge/discharge rate of 100 A/g for UT-CNF. This result is significantly higher than that of traditional electrospun carbon nanofibers. [Display omitted] •The novel technique of multi-needle centrifuged-electrospinning.•Ultra-thin carbon nanofibers with 28 ± 11 nm diameters.•Centrifugal force facilitates the alignment of polymer chains parallel to the nanofiber axis.•A short pore length and large outer surface reduce electrochemical impedance.•Maximum specific capacitance of 243 F/g at 1 A/g and capacitance retention of 77.1% at High-rate.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2018.08.048