Pseudo-symplectic numerical schemes for Landau-Lifshitz dynamics

Numerical techniques for the time integration of Landau-Lifshitz magnetization dynamics are considered. In the continuous model, such dynamics implies the conservation of magnetization amplitude and, when dissipation is neglected, even the conservation of free energy, a property which is generally c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2018-11, Vol.549, p.98-101
Hauptverfasser: d’Aquino, M., Capuano, F., Coppola, G., Serpico, C., Mayergoyz, I.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerical techniques for the time integration of Landau-Lifshitz magnetization dynamics are considered. In the continuous model, such dynamics implies the conservation of magnetization amplitude and, when dissipation is neglected, even the conservation of free energy, a property which is generally corrupted by the time-discretization method. In this work, two classes of explicit schemes, based on Runge-Kutta and midpoint methods respectively, are introduced. The schemes are termed pseudo-symplectic in that they are accurate to order p, but preserve magnetization amplitude and free energy to order q>p. Numerical tests are performed on the simulation of fast precessional switching dynamics for which an analytical solution is available.
ISSN:0921-4526
1873-2135
DOI:10.1016/j.physb.2017.10.067