Probabilistic Condition Number Estimates for Real Polynomial Systems I: A Broader Family of Distributions

We consider the sensitivity of real roots of polynomial systems with respect to perturbations of the coefficients. In particular—for a version of the condition number defined by Cucker and used later by Cucker, Krick, Malajovich, and Wschebor—we establish new probabilistic estimates that allow a muc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2019-02, Vol.19 (1), p.131-157
Hauptverfasser: Ergür, Alperen A., Paouris, Grigoris, Rojas, J. Maurice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the sensitivity of real roots of polynomial systems with respect to perturbations of the coefficients. In particular—for a version of the condition number defined by Cucker and used later by Cucker, Krick, Malajovich, and Wschebor—we establish new probabilistic estimates that allow a much broader family of measures than considered earlier. We also generalize further by allowing overdetermined systems. In Part II, we study smoothed complexity and how sparsity (in the sense of restricting which terms can appear) can help further improve earlier condition number estimates.
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-018-9380-5