Coupled-wire construction of static and Floquet second-order topological insulators

Second-order topological insulators (SOTI) exhibit protected gapless boundary states at their hinges or corners. In this paper, we propose a generic means to construct SOTIs in static and Floquet systems by coupling one-dimensional topological insulator wires along a second dimension through dimeriz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-01, Vol.99 (4), p.045441, Article 045441
Hauptverfasser: Bomantara, Raditya Weda, Zhou, Longwen, Pan, Jiaxin, Gong, Jiangbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 045441
container_title Physical review. B
container_volume 99
creator Bomantara, Raditya Weda
Zhou, Longwen
Pan, Jiaxin
Gong, Jiangbin
description Second-order topological insulators (SOTI) exhibit protected gapless boundary states at their hinges or corners. In this paper, we propose a generic means to construct SOTIs in static and Floquet systems by coupling one-dimensional topological insulator wires along a second dimension through dimerized hopping amplitudes. The Hamiltonian of such SOTIs admits a Kronecker sum structure, making it possible for obtaining its features by analyzing two constituent one-dimensional lattice Hamiltonians defined separately in two orthogonal dimensions. The resulting topological corner states do not rely on any delicate spatial symmetries, but are solely protected by the chiral symmetry of the system. We further utilize our idea to construct Floquet SOTIs, whose number of topological corner states is arbitrarily tunable via changing the hopping amplitudes of the system. Finally, we propose to detect the topological invariants of static and Floquet SOTIs constructed with our approach in experiments by measuring the mean chiral displacements of wavepackets.
doi_str_mv 10.1103/PhysRevB.99.045441
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2181757153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2181757153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-b6c7bbb87ed493f48bea3af8a5faeae519bce347d73bcec964a01c6742aebafd3</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOIzzB1wFXHdMmrTpXergqDCg-FiHPLVDbWqSKvPv7TDq6pzFx72HD6FzSpaUEnb5-L5LT-7regmwJLzinB6hWclrKABqOP7vFTlFi5S2hBBaExAEZuh5Fcahc7b4bqPDJvQpx9HkNvQ4eJyyyq3Bqrd43YXP0WWc3ATZIkTrIs5hCF14a43qcNunsVM5xHSGTrzqklv85hy9rm9eVnfF5uH2fnW1KQwDkgtdG6G1boSzHJjnjXaKKd-oyiunXEVBG8e4sIJNxUDNFaGmFrxUTitv2RxdHO4Ocb8tZbkNY-ynl7KkDRWVoBWbqPJAmRhSis7LIbYfKu4kJXLvT_75kwDy4I_9ALJnaD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2181757153</pqid></control><display><type>article</type><title>Coupled-wire construction of static and Floquet second-order topological insulators</title><source>American Physical Society Journals</source><creator>Bomantara, Raditya Weda ; Zhou, Longwen ; Pan, Jiaxin ; Gong, Jiangbin</creator><creatorcontrib>Bomantara, Raditya Weda ; Zhou, Longwen ; Pan, Jiaxin ; Gong, Jiangbin</creatorcontrib><description>Second-order topological insulators (SOTI) exhibit protected gapless boundary states at their hinges or corners. In this paper, we propose a generic means to construct SOTIs in static and Floquet systems by coupling one-dimensional topological insulator wires along a second dimension through dimerized hopping amplitudes. The Hamiltonian of such SOTIs admits a Kronecker sum structure, making it possible for obtaining its features by analyzing two constituent one-dimensional lattice Hamiltonians defined separately in two orthogonal dimensions. The resulting topological corner states do not rely on any delicate spatial symmetries, but are solely protected by the chiral symmetry of the system. We further utilize our idea to construct Floquet SOTIs, whose number of topological corner states is arbitrarily tunable via changing the hopping amplitudes of the system. Finally, we propose to detect the topological invariants of static and Floquet SOTIs constructed with our approach in experiments by measuring the mean chiral displacements of wavepackets.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.99.045441</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Amplitudes ; Displacements (lattice) ; Topological insulators</subject><ispartof>Physical review. B, 2019-01, Vol.99 (4), p.045441, Article 045441</ispartof><rights>Copyright American Physical Society Jan 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-b6c7bbb87ed493f48bea3af8a5faeae519bce347d73bcec964a01c6742aebafd3</citedby><cites>FETCH-LOGICAL-c390t-b6c7bbb87ed493f48bea3af8a5faeae519bce347d73bcec964a01c6742aebafd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Bomantara, Raditya Weda</creatorcontrib><creatorcontrib>Zhou, Longwen</creatorcontrib><creatorcontrib>Pan, Jiaxin</creatorcontrib><creatorcontrib>Gong, Jiangbin</creatorcontrib><title>Coupled-wire construction of static and Floquet second-order topological insulators</title><title>Physical review. B</title><description>Second-order topological insulators (SOTI) exhibit protected gapless boundary states at their hinges or corners. In this paper, we propose a generic means to construct SOTIs in static and Floquet systems by coupling one-dimensional topological insulator wires along a second dimension through dimerized hopping amplitudes. The Hamiltonian of such SOTIs admits a Kronecker sum structure, making it possible for obtaining its features by analyzing two constituent one-dimensional lattice Hamiltonians defined separately in two orthogonal dimensions. The resulting topological corner states do not rely on any delicate spatial symmetries, but are solely protected by the chiral symmetry of the system. We further utilize our idea to construct Floquet SOTIs, whose number of topological corner states is arbitrarily tunable via changing the hopping amplitudes of the system. Finally, we propose to detect the topological invariants of static and Floquet SOTIs constructed with our approach in experiments by measuring the mean chiral displacements of wavepackets.</description><subject>Amplitudes</subject><subject>Displacements (lattice)</subject><subject>Topological insulators</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOIzzB1wFXHdMmrTpXergqDCg-FiHPLVDbWqSKvPv7TDq6pzFx72HD6FzSpaUEnb5-L5LT-7regmwJLzinB6hWclrKABqOP7vFTlFi5S2hBBaExAEZuh5Fcahc7b4bqPDJvQpx9HkNvQ4eJyyyq3Bqrd43YXP0WWc3ATZIkTrIs5hCF14a43qcNunsVM5xHSGTrzqklv85hy9rm9eVnfF5uH2fnW1KQwDkgtdG6G1boSzHJjnjXaKKd-oyiunXEVBG8e4sIJNxUDNFaGmFrxUTitv2RxdHO4Ocb8tZbkNY-ynl7KkDRWVoBWbqPJAmRhSis7LIbYfKu4kJXLvT_75kwDy4I_9ALJnaD4</recordid><startdate>20190129</startdate><enddate>20190129</enddate><creator>Bomantara, Raditya Weda</creator><creator>Zhou, Longwen</creator><creator>Pan, Jiaxin</creator><creator>Gong, Jiangbin</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190129</creationdate><title>Coupled-wire construction of static and Floquet second-order topological insulators</title><author>Bomantara, Raditya Weda ; Zhou, Longwen ; Pan, Jiaxin ; Gong, Jiangbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-b6c7bbb87ed493f48bea3af8a5faeae519bce347d73bcec964a01c6742aebafd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitudes</topic><topic>Displacements (lattice)</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bomantara, Raditya Weda</creatorcontrib><creatorcontrib>Zhou, Longwen</creatorcontrib><creatorcontrib>Pan, Jiaxin</creatorcontrib><creatorcontrib>Gong, Jiangbin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bomantara, Raditya Weda</au><au>Zhou, Longwen</au><au>Pan, Jiaxin</au><au>Gong, Jiangbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled-wire construction of static and Floquet second-order topological insulators</atitle><jtitle>Physical review. B</jtitle><date>2019-01-29</date><risdate>2019</risdate><volume>99</volume><issue>4</issue><spage>045441</spage><pages>045441-</pages><artnum>045441</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Second-order topological insulators (SOTI) exhibit protected gapless boundary states at their hinges or corners. In this paper, we propose a generic means to construct SOTIs in static and Floquet systems by coupling one-dimensional topological insulator wires along a second dimension through dimerized hopping amplitudes. The Hamiltonian of such SOTIs admits a Kronecker sum structure, making it possible for obtaining its features by analyzing two constituent one-dimensional lattice Hamiltonians defined separately in two orthogonal dimensions. The resulting topological corner states do not rely on any delicate spatial symmetries, but are solely protected by the chiral symmetry of the system. We further utilize our idea to construct Floquet SOTIs, whose number of topological corner states is arbitrarily tunable via changing the hopping amplitudes of the system. Finally, we propose to detect the topological invariants of static and Floquet SOTIs constructed with our approach in experiments by measuring the mean chiral displacements of wavepackets.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.99.045441</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-01, Vol.99 (4), p.045441, Article 045441
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2181757153
source American Physical Society Journals
subjects Amplitudes
Displacements (lattice)
Topological insulators
title Coupled-wire construction of static and Floquet second-order topological insulators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled-wire%20construction%20of%20static%20and%20Floquet%20second-order%20topological%20insulators&rft.jtitle=Physical%20review.%20B&rft.au=Bomantara,%20Raditya%20Weda&rft.date=2019-01-29&rft.volume=99&rft.issue=4&rft.spage=045441&rft.pages=045441-&rft.artnum=045441&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.99.045441&rft_dat=%3Cproquest_cross%3E2181757153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2181757153&rft_id=info:pmid/&rfr_iscdi=true