Coupled-wire construction of static and Floquet second-order topological insulators
Second-order topological insulators (SOTI) exhibit protected gapless boundary states at their hinges or corners. In this paper, we propose a generic means to construct SOTIs in static and Floquet systems by coupling one-dimensional topological insulator wires along a second dimension through dimeriz...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2019-01, Vol.99 (4), p.045441, Article 045441 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 045441 |
container_title | Physical review. B |
container_volume | 99 |
creator | Bomantara, Raditya Weda Zhou, Longwen Pan, Jiaxin Gong, Jiangbin |
description | Second-order topological insulators (SOTI) exhibit protected gapless boundary states at their hinges or corners. In this paper, we propose a generic means to construct SOTIs in static and Floquet systems by coupling one-dimensional topological insulator wires along a second dimension through dimerized hopping amplitudes. The Hamiltonian of such SOTIs admits a Kronecker sum structure, making it possible for obtaining its features by analyzing two constituent one-dimensional lattice Hamiltonians defined separately in two orthogonal dimensions. The resulting topological corner states do not rely on any delicate spatial symmetries, but are solely protected by the chiral symmetry of the system. We further utilize our idea to construct Floquet SOTIs, whose number of topological corner states is arbitrarily tunable via changing the hopping amplitudes of the system. Finally, we propose to detect the topological invariants of static and Floquet SOTIs constructed with our approach in experiments by measuring the mean chiral displacements of wavepackets. |
doi_str_mv | 10.1103/PhysRevB.99.045441 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2181757153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2181757153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-b6c7bbb87ed493f48bea3af8a5faeae519bce347d73bcec964a01c6742aebafd3</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOIzzB1wFXHdMmrTpXergqDCg-FiHPLVDbWqSKvPv7TDq6pzFx72HD6FzSpaUEnb5-L5LT-7regmwJLzinB6hWclrKABqOP7vFTlFi5S2hBBaExAEZuh5Fcahc7b4bqPDJvQpx9HkNvQ4eJyyyq3Bqrd43YXP0WWc3ATZIkTrIs5hCF14a43qcNunsVM5xHSGTrzqklv85hy9rm9eVnfF5uH2fnW1KQwDkgtdG6G1boSzHJjnjXaKKd-oyiunXEVBG8e4sIJNxUDNFaGmFrxUTitv2RxdHO4Ocb8tZbkNY-ynl7KkDRWVoBWbqPJAmRhSis7LIbYfKu4kJXLvT_75kwDy4I_9ALJnaD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2181757153</pqid></control><display><type>article</type><title>Coupled-wire construction of static and Floquet second-order topological insulators</title><source>American Physical Society Journals</source><creator>Bomantara, Raditya Weda ; Zhou, Longwen ; Pan, Jiaxin ; Gong, Jiangbin</creator><creatorcontrib>Bomantara, Raditya Weda ; Zhou, Longwen ; Pan, Jiaxin ; Gong, Jiangbin</creatorcontrib><description>Second-order topological insulators (SOTI) exhibit protected gapless boundary states at their hinges or corners. In this paper, we propose a generic means to construct SOTIs in static and Floquet systems by coupling one-dimensional topological insulator wires along a second dimension through dimerized hopping amplitudes. The Hamiltonian of such SOTIs admits a Kronecker sum structure, making it possible for obtaining its features by analyzing two constituent one-dimensional lattice Hamiltonians defined separately in two orthogonal dimensions. The resulting topological corner states do not rely on any delicate spatial symmetries, but are solely protected by the chiral symmetry of the system. We further utilize our idea to construct Floquet SOTIs, whose number of topological corner states is arbitrarily tunable via changing the hopping amplitudes of the system. Finally, we propose to detect the topological invariants of static and Floquet SOTIs constructed with our approach in experiments by measuring the mean chiral displacements of wavepackets.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.99.045441</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Amplitudes ; Displacements (lattice) ; Topological insulators</subject><ispartof>Physical review. B, 2019-01, Vol.99 (4), p.045441, Article 045441</ispartof><rights>Copyright American Physical Society Jan 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-b6c7bbb87ed493f48bea3af8a5faeae519bce347d73bcec964a01c6742aebafd3</citedby><cites>FETCH-LOGICAL-c390t-b6c7bbb87ed493f48bea3af8a5faeae519bce347d73bcec964a01c6742aebafd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Bomantara, Raditya Weda</creatorcontrib><creatorcontrib>Zhou, Longwen</creatorcontrib><creatorcontrib>Pan, Jiaxin</creatorcontrib><creatorcontrib>Gong, Jiangbin</creatorcontrib><title>Coupled-wire construction of static and Floquet second-order topological insulators</title><title>Physical review. B</title><description>Second-order topological insulators (SOTI) exhibit protected gapless boundary states at their hinges or corners. In this paper, we propose a generic means to construct SOTIs in static and Floquet systems by coupling one-dimensional topological insulator wires along a second dimension through dimerized hopping amplitudes. The Hamiltonian of such SOTIs admits a Kronecker sum structure, making it possible for obtaining its features by analyzing two constituent one-dimensional lattice Hamiltonians defined separately in two orthogonal dimensions. The resulting topological corner states do not rely on any delicate spatial symmetries, but are solely protected by the chiral symmetry of the system. We further utilize our idea to construct Floquet SOTIs, whose number of topological corner states is arbitrarily tunable via changing the hopping amplitudes of the system. Finally, we propose to detect the topological invariants of static and Floquet SOTIs constructed with our approach in experiments by measuring the mean chiral displacements of wavepackets.</description><subject>Amplitudes</subject><subject>Displacements (lattice)</subject><subject>Topological insulators</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOIzzB1wFXHdMmrTpXergqDCg-FiHPLVDbWqSKvPv7TDq6pzFx72HD6FzSpaUEnb5-L5LT-7regmwJLzinB6hWclrKABqOP7vFTlFi5S2hBBaExAEZuh5Fcahc7b4bqPDJvQpx9HkNvQ4eJyyyq3Bqrd43YXP0WWc3ATZIkTrIs5hCF14a43qcNunsVM5xHSGTrzqklv85hy9rm9eVnfF5uH2fnW1KQwDkgtdG6G1boSzHJjnjXaKKd-oyiunXEVBG8e4sIJNxUDNFaGmFrxUTitv2RxdHO4Ocb8tZbkNY-ynl7KkDRWVoBWbqPJAmRhSis7LIbYfKu4kJXLvT_75kwDy4I_9ALJnaD4</recordid><startdate>20190129</startdate><enddate>20190129</enddate><creator>Bomantara, Raditya Weda</creator><creator>Zhou, Longwen</creator><creator>Pan, Jiaxin</creator><creator>Gong, Jiangbin</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190129</creationdate><title>Coupled-wire construction of static and Floquet second-order topological insulators</title><author>Bomantara, Raditya Weda ; Zhou, Longwen ; Pan, Jiaxin ; Gong, Jiangbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-b6c7bbb87ed493f48bea3af8a5faeae519bce347d73bcec964a01c6742aebafd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitudes</topic><topic>Displacements (lattice)</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bomantara, Raditya Weda</creatorcontrib><creatorcontrib>Zhou, Longwen</creatorcontrib><creatorcontrib>Pan, Jiaxin</creatorcontrib><creatorcontrib>Gong, Jiangbin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bomantara, Raditya Weda</au><au>Zhou, Longwen</au><au>Pan, Jiaxin</au><au>Gong, Jiangbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled-wire construction of static and Floquet second-order topological insulators</atitle><jtitle>Physical review. B</jtitle><date>2019-01-29</date><risdate>2019</risdate><volume>99</volume><issue>4</issue><spage>045441</spage><pages>045441-</pages><artnum>045441</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Second-order topological insulators (SOTI) exhibit protected gapless boundary states at their hinges or corners. In this paper, we propose a generic means to construct SOTIs in static and Floquet systems by coupling one-dimensional topological insulator wires along a second dimension through dimerized hopping amplitudes. The Hamiltonian of such SOTIs admits a Kronecker sum structure, making it possible for obtaining its features by analyzing two constituent one-dimensional lattice Hamiltonians defined separately in two orthogonal dimensions. The resulting topological corner states do not rely on any delicate spatial symmetries, but are solely protected by the chiral symmetry of the system. We further utilize our idea to construct Floquet SOTIs, whose number of topological corner states is arbitrarily tunable via changing the hopping amplitudes of the system. Finally, we propose to detect the topological invariants of static and Floquet SOTIs constructed with our approach in experiments by measuring the mean chiral displacements of wavepackets.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.99.045441</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2019-01, Vol.99 (4), p.045441, Article 045441 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2181757153 |
source | American Physical Society Journals |
subjects | Amplitudes Displacements (lattice) Topological insulators |
title | Coupled-wire construction of static and Floquet second-order topological insulators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled-wire%20construction%20of%20static%20and%20Floquet%20second-order%20topological%20insulators&rft.jtitle=Physical%20review.%20B&rft.au=Bomantara,%20Raditya%20Weda&rft.date=2019-01-29&rft.volume=99&rft.issue=4&rft.spage=045441&rft.pages=045441-&rft.artnum=045441&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.99.045441&rft_dat=%3Cproquest_cross%3E2181757153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2181757153&rft_id=info:pmid/&rfr_iscdi=true |