Coupled-wire construction of static and Floquet second-order topological insulators

Second-order topological insulators (SOTI) exhibit protected gapless boundary states at their hinges or corners. In this paper, we propose a generic means to construct SOTIs in static and Floquet systems by coupling one-dimensional topological insulator wires along a second dimension through dimeriz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-01, Vol.99 (4), p.045441, Article 045441
Hauptverfasser: Bomantara, Raditya Weda, Zhou, Longwen, Pan, Jiaxin, Gong, Jiangbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Second-order topological insulators (SOTI) exhibit protected gapless boundary states at their hinges or corners. In this paper, we propose a generic means to construct SOTIs in static and Floquet systems by coupling one-dimensional topological insulator wires along a second dimension through dimerized hopping amplitudes. The Hamiltonian of such SOTIs admits a Kronecker sum structure, making it possible for obtaining its features by analyzing two constituent one-dimensional lattice Hamiltonians defined separately in two orthogonal dimensions. The resulting topological corner states do not rely on any delicate spatial symmetries, but are solely protected by the chiral symmetry of the system. We further utilize our idea to construct Floquet SOTIs, whose number of topological corner states is arbitrarily tunable via changing the hopping amplitudes of the system. Finally, we propose to detect the topological invariants of static and Floquet SOTIs constructed with our approach in experiments by measuring the mean chiral displacements of wavepackets.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.99.045441