Regulation of glomerular heparanase expression by aldosterone, angiotensin II and reactive oxygen species

Background. Inhibition of the renin–angiotensin–aldosterone system (RAAS) provides renoprotection in adriamycin nephropathy (AN), along with a decrease in overexpression of glomerular heparanase. Angiotensin II (AngII) and reactive oxygen species (ROS) are known to regulate heparanase expression in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nephrology, dialysis, transplantation dialysis, transplantation, 2009-09, Vol.24 (9), p.2637-2645
Hauptverfasser: van den Hoven, Mabel J., Waanders, Femke, Rops, Angelique L., Kramer, Andrea B., van Goor, Harry, Berden, Jo H., Navis, Gerjan, van der Vlag, Johan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. Inhibition of the renin–angiotensin–aldosterone system (RAAS) provides renoprotection in adriamycin nephropathy (AN), along with a decrease in overexpression of glomerular heparanase. Angiotensin II (AngII) and reactive oxygen species (ROS) are known to regulate heparanase expression in vivo. However, it is unknown whether this is also the case for aldosterone. Therefore, we further assessed the role of aldosterone, AngII and ROS in the regulation of glomerular heparanase expression. Methods. Six weeks after the induction of AN, rats were treated with vehicle (n = 8), lisinopril (75 mg/L, n = 10), spironolactone (3.3 mg/day, n = 12) or the combination of lisinopril and spironolactone (n = 14) for 12 weeks. Age-matched healthy rats served as controls (n = 6). After 18 weeks, renal heparanase and heparan sulfate (HS) expression were examined by immunofluorescence staining. In addition, the effect of aldosterone, AngII and ROS on heparanase expression in cultured podocytes was determined. Results. Treatment with lisinopril, spironolactone or their combination significantly blunted the increased glomerular heparanase expression and restored the decreased HS expression in the GBM. Addition of aldosterone to cultured podocytes resulted in a significantly increased heparanase mRNA and protein expression, which could be inhibited by spironolactone. Heparanase mRNA and protein expression in podocytes were also significantly increased after stimulation with AngII or ROS. Conclusions. Our in vivo and in vitro results show that not only AngII and ROS, but also aldosterone is involved in the regulation of glomerular heparanase expression.
ISSN:0931-0509
1460-2385
DOI:10.1093/ndt/gfp182