The two mutations, Q204X and nt821, of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breeds1

The availability of genetic tests to detect different mutations in the myostatin gene allows the identification of heterozygous animals and would warrant the superiority of these animals for slaughter performance if this superiority is confirmed. Thus, 2 mutations of this gene, Q204X and nt821, were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of animal science 2010-02, Vol.88 (2), p.446-454
Hauptverfasser: Allais, S., Levéziel, H., Payet-Duprat, N., Hocquette, J. F., Lepetit, J., Rousset, S., Denoyelle, C., Bernard-Capel, C., Journaux, L., Bonnot, A., Renand, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The availability of genetic tests to detect different mutations in the myostatin gene allows the identification of heterozygous animals and would warrant the superiority of these animals for slaughter performance if this superiority is confirmed. Thus, 2 mutations of this gene, Q204X and nt821, were studied in 3 French beef breeds in the program Qualvigene. This work was done with 1,114 Charolais. 1,254 Limousin, and 981 Blonde d'Aquitaine young bulls from, respectively, 48, 36, and 30 sires and slaughtered from 2004 to 2006. In addition to the usual carcass traits recorded at slaughter (e.g., carcass yield, muscle score), carcass composition was estimated by weighing internal fat and dissecting the 6th rib. The muscle characteristic traits analyzed were lipid and collagen contents, muscle fiber section area, and pH. Regarding meat quality, sensory qualities of meat samples were evaluated by a taste panel, and Warner-Bratzler shear force was measured. Deoxyribonucleic acid was extracted from the blood samples of all calves, the blood samples of 78% of the dams, and the blood or semen samples of all the sires. Genotypes were determined for 2 disruptive mutations, Q204X and nt821. Analyses were conducted by breed. The superiority of carcass traits of calves carrying one copy of the mutated allele (Q204X or nt821) over noncarrier animals was approximately +1 SD in the Charolais and Limousin breeds but was not significant in the Blonde d'Aquitaine. In the Charolais breed, for which the frequency was the greatest (7%), young bulls carrying the Q204X mutation presented a carcass with less fat, less intramuscular fat and collagen contents, and a clearer and more tender meat than those of homozygous-normal cattle. The meat of these animals also had slightly less flavor. Also in the Charolais breed, 13 of 48 sires were heterozygous. For each sire, the substitution effect of the wild allele by the mutant allele was approximately +1 SD for carcass conformation and yield, showing that the estimate of the substitution effect was independent of family structure, as it ought to be for a causal mutation. These results illustrate the challenge of using genetic tests to detect animals with the genetic potential for greater grades of carcasses and meat quality. [PUBLICATION ABSTRACT]
ISSN:0021-8812
1525-3163
DOI:10.2527/jas.2009-2385