A characterization of the group 2Dn(2), where n=2m+1≥5

In this paper it is proved that the group 2 D n (2), where n =2 m +1≥5, can be uniquely determined by its order components. More precisely we will prove that if G is a finite group and OC ( G ) denotes the set of order components of G , then OC ( G )= OC ( 2 D n (2)) if and only if G ≅ 2 D n (2). A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2009-09, Vol.31 (1-2), p.447-457
Hauptverfasser: Darafsheh, M. R., Mahmiani, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 457
container_issue 1-2
container_start_page 447
container_title Journal of applied mathematics & computing
container_volume 31
creator Darafsheh, M. R.
Mahmiani, A.
description In this paper it is proved that the group 2 D n (2), where n =2 m +1≥5, can be uniquely determined by its order components. More precisely we will prove that if G is a finite group and OC ( G ) denotes the set of order components of G , then OC ( G )= OC ( 2 D n (2)) if and only if G ≅ 2 D n (2). A main consequence of our result is the validity of Thompson’s conjecture for the group under consideration.
doi_str_mv 10.1007/s12190-008-0223-4
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_217998358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895163241</sourcerecordid><originalsourceid>FETCH-LOGICAL-p704-5de6c96f04557503061cb94d6690b0f3ff549e2d6c51b4dea6a4e2cb95bd10fa3</originalsourceid><addsrcrecordid>eNpFkM1KxDAUhYMoOI4-gLviStHozc9Nk4WLYfyFATezD2mbTDtoW9MWwTfwLdz4Ij6KT2KHEVzdw-XjHPgIOWZwyQDSq45xZoACaAqcCyp3yIRphZSDxt0xo9EUx8c-Oei6NYBKDZgJMbMkL110ee9j9e76qqmTJiR96ZNVbIY24Tf1KT-7SN5KH_33Z33NX87Zz8cXHpK94J47f_R3p2R5d7ucP9DF0_3jfLagbQqSYuFVblQAiZgiCFAsz4wslDKQQRAhoDSeFypHlsnCO-Wk5yOCWcEgODElJ9vaNjavg-96u26GWI-LlrPUGC1QjxDfQl0bq3rl4z_EwG4E2a0gOwqyG0FWil98Dle8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217998358</pqid></control><display><type>article</type><title>A characterization of the group 2Dn(2), where n=2m+1≥5</title><source>SpringerLink Journals - AutoHoldings</source><creator>Darafsheh, M. R. ; Mahmiani, A.</creator><creatorcontrib>Darafsheh, M. R. ; Mahmiani, A.</creatorcontrib><description>In this paper it is proved that the group 2 D n (2), where n =2 m +1≥5, can be uniquely determined by its order components. More precisely we will prove that if G is a finite group and OC ( G ) denotes the set of order components of G , then OC ( G )= OC ( 2 D n (2)) if and only if G ≅ 2 D n (2). A main consequence of our result is the validity of Thompson’s conjecture for the group under consideration.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-008-0223-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied mathematics ; Computational Mathematics and Numerical Analysis ; Graph theory ; Mathematical and Computational Engineering ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Prime numbers ; Studies ; Theory of Computation</subject><ispartof>Journal of applied mathematics &amp; computing, 2009-09, Vol.31 (1-2), p.447-457</ispartof><rights>Korean Society for Computational and Applied Mathematics 2008</rights><rights>Korean Society for Computational and Applied Mathematics 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p704-5de6c96f04557503061cb94d6690b0f3ff549e2d6c51b4dea6a4e2cb95bd10fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-008-0223-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-008-0223-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Darafsheh, M. R.</creatorcontrib><creatorcontrib>Mahmiani, A.</creatorcontrib><title>A characterization of the group 2Dn(2), where n=2m+1≥5</title><title>Journal of applied mathematics &amp; computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>In this paper it is proved that the group 2 D n (2), where n =2 m +1≥5, can be uniquely determined by its order components. More precisely we will prove that if G is a finite group and OC ( G ) denotes the set of order components of G , then OC ( G )= OC ( 2 D n (2)) if and only if G ≅ 2 D n (2). A main consequence of our result is the validity of Thompson’s conjecture for the group under consideration.</description><subject>Applied mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Graph theory</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Prime numbers</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkM1KxDAUhYMoOI4-gLviStHozc9Nk4WLYfyFATezD2mbTDtoW9MWwTfwLdz4Ij6KT2KHEVzdw-XjHPgIOWZwyQDSq45xZoACaAqcCyp3yIRphZSDxt0xo9EUx8c-Oei6NYBKDZgJMbMkL110ee9j9e76qqmTJiR96ZNVbIY24Tf1KT-7SN5KH_33Z33NX87Zz8cXHpK94J47f_R3p2R5d7ucP9DF0_3jfLagbQqSYuFVblQAiZgiCFAsz4wslDKQQRAhoDSeFypHlsnCO-Wk5yOCWcEgODElJ9vaNjavg-96u26GWI-LlrPUGC1QjxDfQl0bq3rl4z_EwG4E2a0gOwqyG0FWil98Dle8</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Darafsheh, M. R.</creator><creator>Mahmiani, A.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090901</creationdate><title>A characterization of the group 2Dn(2), where n=2m+1≥5</title><author>Darafsheh, M. R. ; Mahmiani, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p704-5de6c96f04557503061cb94d6690b0f3ff549e2d6c51b4dea6a4e2cb95bd10fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Graph theory</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Prime numbers</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darafsheh, M. R.</creatorcontrib><creatorcontrib>Mahmiani, A.</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied mathematics &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darafsheh, M. R.</au><au>Mahmiani, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A characterization of the group 2Dn(2), where n=2m+1≥5</atitle><jtitle>Journal of applied mathematics &amp; computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>31</volume><issue>1-2</issue><spage>447</spage><epage>457</epage><pages>447-457</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>In this paper it is proved that the group 2 D n (2), where n =2 m +1≥5, can be uniquely determined by its order components. More precisely we will prove that if G is a finite group and OC ( G ) denotes the set of order components of G , then OC ( G )= OC ( 2 D n (2)) if and only if G ≅ 2 D n (2). A main consequence of our result is the validity of Thompson’s conjecture for the group under consideration.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s12190-008-0223-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1598-5865
ispartof Journal of applied mathematics & computing, 2009-09, Vol.31 (1-2), p.447-457
issn 1598-5865
1865-2085
language eng
recordid cdi_proquest_journals_217998358
source SpringerLink Journals - AutoHoldings
subjects Applied mathematics
Computational Mathematics and Numerical Analysis
Graph theory
Mathematical and Computational Engineering
Mathematical models
Mathematics
Mathematics and Statistics
Mathematics of Computing
Prime numbers
Studies
Theory of Computation
title A characterization of the group 2Dn(2), where n=2m+1≥5
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20characterization%20of%20the%20group%202Dn(2),%20where%C2%A0n=2m+1%E2%89%A55&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Darafsheh,%20M.%20R.&rft.date=2009-09-01&rft.volume=31&rft.issue=1-2&rft.spage=447&rft.epage=457&rft.pages=447-457&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-008-0223-4&rft_dat=%3Cproquest_sprin%3E1895163241%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217998358&rft_id=info:pmid/&rfr_iscdi=true