A characterization of the group 2Dn(2), where n=2m+1≥5
In this paper it is proved that the group 2 D n (2), where n =2 m +1≥5, can be uniquely determined by its order components. More precisely we will prove that if G is a finite group and OC ( G ) denotes the set of order components of G , then OC ( G )= OC ( 2 D n (2)) if and only if G ≅ 2 D n (2). A...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics & computing 2009-09, Vol.31 (1-2), p.447-457 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 457 |
---|---|
container_issue | 1-2 |
container_start_page | 447 |
container_title | Journal of applied mathematics & computing |
container_volume | 31 |
creator | Darafsheh, M. R. Mahmiani, A. |
description | In this paper it is proved that the group
2
D
n
(2), where
n
=2
m
+1≥5, can be uniquely determined by its order components. More precisely we will prove that if
G
is a finite group and
OC
(
G
) denotes the set of order components of
G
, then
OC
(
G
)=
OC
(
2
D
n
(2)) if and only if
G
≅
2
D
n
(2). A main consequence of our result is the validity of Thompson’s conjecture for the group under consideration. |
doi_str_mv | 10.1007/s12190-008-0223-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_217998358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895163241</sourcerecordid><originalsourceid>FETCH-LOGICAL-p704-5de6c96f04557503061cb94d6690b0f3ff549e2d6c51b4dea6a4e2cb95bd10fa3</originalsourceid><addsrcrecordid>eNpFkM1KxDAUhYMoOI4-gLviStHozc9Nk4WLYfyFATezD2mbTDtoW9MWwTfwLdz4Ij6KT2KHEVzdw-XjHPgIOWZwyQDSq45xZoACaAqcCyp3yIRphZSDxt0xo9EUx8c-Oei6NYBKDZgJMbMkL110ee9j9e76qqmTJiR96ZNVbIY24Tf1KT-7SN5KH_33Z33NX87Zz8cXHpK94J47f_R3p2R5d7ucP9DF0_3jfLagbQqSYuFVblQAiZgiCFAsz4wslDKQQRAhoDSeFypHlsnCO-Wk5yOCWcEgODElJ9vaNjavg-96u26GWI-LlrPUGC1QjxDfQl0bq3rl4z_EwG4E2a0gOwqyG0FWil98Dle8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217998358</pqid></control><display><type>article</type><title>A characterization of the group 2Dn(2), where n=2m+1≥5</title><source>SpringerLink Journals - AutoHoldings</source><creator>Darafsheh, M. R. ; Mahmiani, A.</creator><creatorcontrib>Darafsheh, M. R. ; Mahmiani, A.</creatorcontrib><description>In this paper it is proved that the group
2
D
n
(2), where
n
=2
m
+1≥5, can be uniquely determined by its order components. More precisely we will prove that if
G
is a finite group and
OC
(
G
) denotes the set of order components of
G
, then
OC
(
G
)=
OC
(
2
D
n
(2)) if and only if
G
≅
2
D
n
(2). A main consequence of our result is the validity of Thompson’s conjecture for the group under consideration.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-008-0223-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied mathematics ; Computational Mathematics and Numerical Analysis ; Graph theory ; Mathematical and Computational Engineering ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Prime numbers ; Studies ; Theory of Computation</subject><ispartof>Journal of applied mathematics & computing, 2009-09, Vol.31 (1-2), p.447-457</ispartof><rights>Korean Society for Computational and Applied Mathematics 2008</rights><rights>Korean Society for Computational and Applied Mathematics 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p704-5de6c96f04557503061cb94d6690b0f3ff549e2d6c51b4dea6a4e2cb95bd10fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-008-0223-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-008-0223-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Darafsheh, M. R.</creatorcontrib><creatorcontrib>Mahmiani, A.</creatorcontrib><title>A characterization of the group 2Dn(2), where n=2m+1≥5</title><title>Journal of applied mathematics & computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>In this paper it is proved that the group
2
D
n
(2), where
n
=2
m
+1≥5, can be uniquely determined by its order components. More precisely we will prove that if
G
is a finite group and
OC
(
G
) denotes the set of order components of
G
, then
OC
(
G
)=
OC
(
2
D
n
(2)) if and only if
G
≅
2
D
n
(2). A main consequence of our result is the validity of Thompson’s conjecture for the group under consideration.</description><subject>Applied mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Graph theory</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Prime numbers</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkM1KxDAUhYMoOI4-gLviStHozc9Nk4WLYfyFATezD2mbTDtoW9MWwTfwLdz4Ij6KT2KHEVzdw-XjHPgIOWZwyQDSq45xZoACaAqcCyp3yIRphZSDxt0xo9EUx8c-Oei6NYBKDZgJMbMkL110ee9j9e76qqmTJiR96ZNVbIY24Tf1KT-7SN5KH_33Z33NX87Zz8cXHpK94J47f_R3p2R5d7ucP9DF0_3jfLagbQqSYuFVblQAiZgiCFAsz4wslDKQQRAhoDSeFypHlsnCO-Wk5yOCWcEgODElJ9vaNjavg-96u26GWI-LlrPUGC1QjxDfQl0bq3rl4z_EwG4E2a0gOwqyG0FWil98Dle8</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Darafsheh, M. R.</creator><creator>Mahmiani, A.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090901</creationdate><title>A characterization of the group 2Dn(2), where n=2m+1≥5</title><author>Darafsheh, M. R. ; Mahmiani, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p704-5de6c96f04557503061cb94d6690b0f3ff549e2d6c51b4dea6a4e2cb95bd10fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Graph theory</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Prime numbers</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darafsheh, M. R.</creatorcontrib><creatorcontrib>Mahmiani, A.</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied mathematics & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darafsheh, M. R.</au><au>Mahmiani, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A characterization of the group 2Dn(2), where n=2m+1≥5</atitle><jtitle>Journal of applied mathematics & computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>31</volume><issue>1-2</issue><spage>447</spage><epage>457</epage><pages>447-457</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>In this paper it is proved that the group
2
D
n
(2), where
n
=2
m
+1≥5, can be uniquely determined by its order components. More precisely we will prove that if
G
is a finite group and
OC
(
G
) denotes the set of order components of
G
, then
OC
(
G
)=
OC
(
2
D
n
(2)) if and only if
G
≅
2
D
n
(2). A main consequence of our result is the validity of Thompson’s conjecture for the group under consideration.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s12190-008-0223-4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-5865 |
ispartof | Journal of applied mathematics & computing, 2009-09, Vol.31 (1-2), p.447-457 |
issn | 1598-5865 1865-2085 |
language | eng |
recordid | cdi_proquest_journals_217998358 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied mathematics Computational Mathematics and Numerical Analysis Graph theory Mathematical and Computational Engineering Mathematical models Mathematics Mathematics and Statistics Mathematics of Computing Prime numbers Studies Theory of Computation |
title | A characterization of the group 2Dn(2), where n=2m+1≥5 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20characterization%20of%20the%20group%202Dn(2),%20where%C2%A0n=2m+1%E2%89%A55&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Darafsheh,%20M.%20R.&rft.date=2009-09-01&rft.volume=31&rft.issue=1-2&rft.spage=447&rft.epage=457&rft.pages=447-457&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-008-0223-4&rft_dat=%3Cproquest_sprin%3E1895163241%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217998358&rft_id=info:pmid/&rfr_iscdi=true |