A characterization of the group 2Dn(2), where n=2m+1≥5
In this paper it is proved that the group 2 D n (2), where n =2 m +1≥5, can be uniquely determined by its order components. More precisely we will prove that if G is a finite group and OC ( G ) denotes the set of order components of G , then OC ( G )= OC ( 2 D n (2)) if and only if G ≅ 2 D n (2). A...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics & computing 2009-09, Vol.31 (1-2), p.447-457 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper it is proved that the group
2
D
n
(2), where
n
=2
m
+1≥5, can be uniquely determined by its order components. More precisely we will prove that if
G
is a finite group and
OC
(
G
) denotes the set of order components of
G
, then
OC
(
G
)=
OC
(
2
D
n
(2)) if and only if
G
≅
2
D
n
(2). A main consequence of our result is the validity of Thompson’s conjecture for the group under consideration. |
---|---|
ISSN: | 1598-5865 1865-2085 |
DOI: | 10.1007/s12190-008-0223-4 |