A characterization of the group 2Dn(2), where n=2m+1≥5

In this paper it is proved that the group 2 D n (2), where n =2 m +1≥5, can be uniquely determined by its order components. More precisely we will prove that if G is a finite group and OC ( G ) denotes the set of order components of G , then OC ( G )= OC ( 2 D n (2)) if and only if G ≅ 2 D n (2). A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2009-09, Vol.31 (1-2), p.447-457
Hauptverfasser: Darafsheh, M. R., Mahmiani, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper it is proved that the group 2 D n (2), where n =2 m +1≥5, can be uniquely determined by its order components. More precisely we will prove that if G is a finite group and OC ( G ) denotes the set of order components of G , then OC ( G )= OC ( 2 D n (2)) if and only if G ≅ 2 D n (2). A main consequence of our result is the validity of Thompson’s conjecture for the group under consideration.
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-008-0223-4