Directional dichroism in the paramagnetic state of multiferroics: A case study of infrared light absorption in Sr^sub 2^ CoSi^sub 2^ O^sub 7^ at high temperatures

The coexisting magnetic and ferroelectric orders in multiferroic materials give rise to a handful of novel magnetoelectric phenomena, such as the absorption difference for the opposite propagation directions of light called the nonreciprocal directional dichroism (NDD). Usually, these effects are re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-01, Vol.99 (1), p.1
Hauptverfasser: Viirok, J, Nagel, U, Rõõm, T, Farkas, D G, Balla, P, Szaller, D, Kocsis, V, Tokunaga, Y, Taguchi, Y, Tokura, Y, Bernáth, B, Kamenskyi, D L, Kézsmárki, I, Bordács, S, Penc, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The coexisting magnetic and ferroelectric orders in multiferroic materials give rise to a handful of novel magnetoelectric phenomena, such as the absorption difference for the opposite propagation directions of light called the nonreciprocal directional dichroism (NDD). Usually, these effects are restricted to low temperature, where the multiferroic phase develops. In this paper, we report the observation of NDD in the paramagnetic phase of Sr2 CoSi2 O7 up to temperatures more than 10 times higher than its Néel temperature (7 K) and in fields up to 30 T. The magnetically induced polarization and NDD in the disordered paramagnetic phase is readily explained by the single-ion spin-dependent hybridization mechanism, which does not necessitate correlation effects between magnetic ions. The Sr2 CoSi2 O7 provides an ideal system for a theoretical case study, demonstrating the concept of magnetoelectric spin excitations in a paramagnet via analytical as well as numerical approaches. We applied exact diagonalization of a spin cluster to map out the temperature and field dependence of the spin excitations, as well as symmetry arguments of the single ion and lattice problem to get the spectrum and selection rules.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.99.014410