Surface Studies of Aminoferrocene Derivatives on Gold:  Electrochemical Sensors for Chemical Warfare Agents

The cystamine conjugate [(BocNH)Fc(CO)CSA]2 was prepared by coupling cystamine with the N-protected ferrocene amino acid derivative BocHN-Fc-COOH and was fully characterized by spectroscopic methods and by single-crystal X-ray diffraction. The cystamine conjugate forms films on gold substrates, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2007-04, Vol.79 (7), p.2877-2884
Hauptverfasser: Khan, Mohammad A. K, Long, Yi-Tao, Schatte, Gabriele, Kraatz, Heinz-Bernhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cystamine conjugate [(BocNH)Fc(CO)CSA]2 was prepared by coupling cystamine with the N-protected ferrocene amino acid derivative BocHN-Fc-COOH and was fully characterized by spectroscopic methods and by single-crystal X-ray diffraction. The cystamine conjugate forms films on gold substrates, which upon deprotection of the amino group, react with chemical warfare agent (CWA) mimics, upon which the redox properties of the Fc group are affected significantly. Cyclic voltammetry shows 50(5) mV anodic shifts of the Fc redox potentials after exposure to EtSCH2CH2Cl, a simulant for sulfur mustard HD (MA), and (NC)(EtO)2P(O), a simulant for nerve agent Tabun (NA). Exposure to MA and NA causes an increase in 2.3 and 4.5 ng mass, respectively, in QCM which indicates ca. 70% efficiency in Boc-deprotection. Ellipsometry measured a film thickness increase from 6(±1) Å for the deprotected film to 10(±4) Å for the film modified with MA and to 7(±2) Å for the film modified with NA. AFM measurements show changes in the thickness and morphology of the film after reaction with MA and NA. The surfaces were analyzed by X-ray photoelectron spectroscopy (XPS) and clearly show the attachment of the cystamine conjugate on the surface and its reaction with CWA mimics.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac061981m