Porphyrin Assembly on β-Cyclodextrin for Selective Sensing and Detection of a Zinc Ion Based on the Dual Emission Fluorescence Ratio

In the present paper, a new cyclodextrin/porphyrin supramolecular sensitizer for zinc ion has been proposed based on the porphyrin dual fluorescence emission ratio. In aqueous solution, meso-tetraphenylporphyrin shows weak fluorescence, while in the presence of alkylated β-cyclodextrin, it exhibits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2003-02, Vol.75 (3), p.612-621
Hauptverfasser: Yang, Ronghua, Li, Ke'an, Wang, Kemin, Zhao, Fenglin, Li, Na, Liu, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, a new cyclodextrin/porphyrin supramolecular sensitizer for zinc ion has been proposed based on the porphyrin dual fluorescence emission ratio. In aqueous solution, meso-tetraphenylporphyrin shows weak fluorescence, while in the presence of alkylated β-cyclodextrin, it exhibits significant fluorescence enhancement by forming a cyclodextrin/porphyrin inclusion complex. Furthermore, the formation of a supramolecular complex causes a remarkable increase of the porphyrin metalation rate following the porphyrin fluorescence emission changes at two different emission wavelengths. The fluorescence emission of tetraphenylporphyrin at 656-nm bands decreases while that at 606 nm increases upon zinc ion interaction. Thus, the inclusion complex can behave as a ratiometric fluorescent sensor. Theoretically derivative equations for fluorescent ratiometry have been proposed for the first time. The feasibility of the proposed method is demonstrated by the performance of fluorometric detection of zinc ion. With the optimum conditions described, zinc ion in aqueous solution can be determined from 5.0 × 10-7 to 2.5 × 10-4 M. As the porphyrin electronic absorption and fluorescence emission are located in the visible range, and the fluorescence changes upon zinc ion interaction show high selectivity over biologically relevant cations, the inclusion complex could be used for biomedical application.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac020467n