The Effect of Micelles on the Steady-State and Time-Resolved Fluorescence of Indole, 1-Methylindole, and 3-Methylindole in Aqueous Media

3-Methylindole (skatole) is a component of animal waste and is, consequently, a primary component in odor problems arising in livestock management, notably swine production. The ability to probe and to exploit the interactions of 3-methylindole with micelles has important implications for monitoring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 1997-05, Vol.69 (10), p.1925-1930
Hauptverfasser: Ashby, K. D, Das, K, Petrich, J. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:3-Methylindole (skatole) is a component of animal waste and is, consequently, a primary component in odor problems arising in livestock management, notably swine production. The ability to probe and to exploit the interactions of 3-methylindole with micelles has important implications for monitoring and controlling odor problems. The effect of a surfactant (Brij-35) on the fluorescence properties of indole, 1-methylindole, and 3-methylindole in aqueous solutions is reported. Steady-state fluorescence spectra reveal a blue shift in the emission as the surfactant concentration is increased, while the absorption spectra are practically unaffected. Time-resolved fluorescence measurements reveal shorter average lifetimes for 3-methylindole (3-MI) as the Brij-35 concentration is increased. The fluorescence decay of 3-MI in water is described well by a single exponential, whereas, at the highest Brij-35 concentration, a triple exponential is necessary to describe the fluorescence decay. The contributions of each component in the fluorescence decay are used to determine the extent of 3-MI partitioning into the micelle phase. It is found that 93% of the 3-MI molecules partition into the micelle at the highest Brij-35 concentration used. The equilibrium constant for the association between the micelles and the 3-MI molecules is determined to be 2.6 × 104 M-1. In addition, the reduction of 3-MI in the vapor phase by addition of a dry surfactant, lecithin, is also demonstrated.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac9611632