Small-Angle X-ray Scattering Measurements and Image Reconstruction by the Maximum Entropy Method
For rapid small-angle X-ray scattering (SAXS) measurements in laboratories, we have designed and assembled a SAXS measurement system, which includes a new point-focusing camera using a doubly curved monochromator of a W/Si multilayer. As the two-dimensional detector and the X-ray source, an imaging...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 1997-02, Vol.69 (4), p.794-800 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 800 |
---|---|
container_issue | 4 |
container_start_page | 794 |
container_title | Analytical chemistry (Washington) |
container_volume | 69 |
creator | Sasanuma, Yuji Law, Robert V Kobayashi, Yuji Sasaki, Katsunari |
description | For rapid small-angle X-ray scattering (SAXS) measurements in laboratories, we have designed and assembled a SAXS measurement system, which includes a new point-focusing camera using a doubly curved monochromator of a W/Si multilayer. As the two-dimensional detector and the X-ray source, an imaging plate (IP) and a rotating-anode generator operated at 40 kV and 30 mA with a microfocus of 0.1 × 0.1 mm2 are used. As an example of time-resolved SAXS measurements with our system, an observation of smectic A-nematic transition of a thermotropic liquid crystal 4-[(2‘-methylbutyl)phenyl]-4‘-n-octylbiphenyl-4-carboxylate is reported. To correct the broadening due to the beam divergence and enhance the signal-to-noise ratio of the data, two-dimensional deconvolution based on the maximum entropy method (MaxEnt) has been employed. A SAXS image of a uniaxially extended high-density polyethylene film was reconstructed from noisy data obtained by an X-ray exposure of only 3 s. The deconvolution was shown to give quantitative information regarding the position and breadth of the scattering maxima. It can be concluded that the combined use of the setup, IPs, and the MaxEnt processing facilitates rapid SAXS measurements with laboratory-based X-ray sources. |
doi_str_mv | 10.1021/ac9604301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_217858327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11210020</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-6336440673290a8b34b37199ed90afd8d2a54292fab49caa7c11f58f75e207df3</originalsourceid><addsrcrecordid>eNplkMtOwzAQRS0EEqWw4A8sBAsWgbGdxMmSd5F4iRYJsTFTxymBxCm2I9G_J6ioLFiNRnPuvTNDyC6DIwacHaPOU4gFsDUyYAmHKM0yvk4GACAiLgE2yZb37wCMAUsH5HXcYF1HJ3ZWG_ocOVzQscYQjKvsjN4a9J0zjbHBU7QFvW5wZuij0a31wXU6VK2l0wUNb4be4lfVdA29sMG180UvDm9tsU02Sqy92fmtQ_J0eTE5G0U391fXZyc3EcZMhigVIo1jSKXgOWA2FfFUSJbnpujbssgKjknMc17iNM41otSMlUlWysRwkEUphmRv6Tt37WdnfFDvbedsH6k4k1mSCS576HAJadd670yp5q5q0C0UA_XzP7X6X8_u_xqi11iXDq2u_ErAkzRLenJIoiVW-WC-VmN0H6o_RiZq8jBWL_L0nJ_ejRTv-YMlj9r_rfg__hvaQIkK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217858327</pqid></control><display><type>article</type><title>Small-Angle X-ray Scattering Measurements and Image Reconstruction by the Maximum Entropy Method</title><source>ACS Publications</source><creator>Sasanuma, Yuji ; Law, Robert V ; Kobayashi, Yuji ; Sasaki, Katsunari</creator><creatorcontrib>Sasanuma, Yuji ; Law, Robert V ; Kobayashi, Yuji ; Sasaki, Katsunari</creatorcontrib><description>For rapid small-angle X-ray scattering (SAXS) measurements in laboratories, we have designed and assembled a SAXS measurement system, which includes a new point-focusing camera using a doubly curved monochromator of a W/Si multilayer. As the two-dimensional detector and the X-ray source, an imaging plate (IP) and a rotating-anode generator operated at 40 kV and 30 mA with a microfocus of 0.1 × 0.1 mm2 are used. As an example of time-resolved SAXS measurements with our system, an observation of smectic A-nematic transition of a thermotropic liquid crystal 4-[(2‘-methylbutyl)phenyl]-4‘-n-octylbiphenyl-4-carboxylate is reported. To correct the broadening due to the beam divergence and enhance the signal-to-noise ratio of the data, two-dimensional deconvolution based on the maximum entropy method (MaxEnt) has been employed. A SAXS image of a uniaxially extended high-density polyethylene film was reconstructed from noisy data obtained by an X-ray exposure of only 3 s. The deconvolution was shown to give quantitative information regarding the position and breadth of the scattering maxima. It can be concluded that the combined use of the setup, IPs, and the MaxEnt processing facilitates rapid SAXS measurements with laboratory-based X-ray sources.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac9604301</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Computers in experimental physics ; Exact sciences and technology ; Image processing ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Measurement ; Physics ; X- and γ-ray instruments and techniques ; X-rays</subject><ispartof>Analytical chemistry (Washington), 1997-02, Vol.69 (4), p.794-800</ispartof><rights>Copyright © 1997 American Chemical Society</rights><rights>1997 INIST-CNRS</rights><rights>Copyright American Chemical Society Feb 15, 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-6336440673290a8b34b37199ed90afd8d2a54292fab49caa7c11f58f75e207df3</citedby><cites>FETCH-LOGICAL-a417t-6336440673290a8b34b37199ed90afd8d2a54292fab49caa7c11f58f75e207df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac9604301$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac9604301$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2568504$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sasanuma, Yuji</creatorcontrib><creatorcontrib>Law, Robert V</creatorcontrib><creatorcontrib>Kobayashi, Yuji</creatorcontrib><creatorcontrib>Sasaki, Katsunari</creatorcontrib><title>Small-Angle X-ray Scattering Measurements and Image Reconstruction by the Maximum Entropy Method</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>For rapid small-angle X-ray scattering (SAXS) measurements in laboratories, we have designed and assembled a SAXS measurement system, which includes a new point-focusing camera using a doubly curved monochromator of a W/Si multilayer. As the two-dimensional detector and the X-ray source, an imaging plate (IP) and a rotating-anode generator operated at 40 kV and 30 mA with a microfocus of 0.1 × 0.1 mm2 are used. As an example of time-resolved SAXS measurements with our system, an observation of smectic A-nematic transition of a thermotropic liquid crystal 4-[(2‘-methylbutyl)phenyl]-4‘-n-octylbiphenyl-4-carboxylate is reported. To correct the broadening due to the beam divergence and enhance the signal-to-noise ratio of the data, two-dimensional deconvolution based on the maximum entropy method (MaxEnt) has been employed. A SAXS image of a uniaxially extended high-density polyethylene film was reconstructed from noisy data obtained by an X-ray exposure of only 3 s. The deconvolution was shown to give quantitative information regarding the position and breadth of the scattering maxima. It can be concluded that the combined use of the setup, IPs, and the MaxEnt processing facilitates rapid SAXS measurements with laboratory-based X-ray sources.</description><subject>Chemistry</subject><subject>Computers in experimental physics</subject><subject>Exact sciences and technology</subject><subject>Image processing</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Measurement</subject><subject>Physics</subject><subject>X- and γ-ray instruments and techniques</subject><subject>X-rays</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNplkMtOwzAQRS0EEqWw4A8sBAsWgbGdxMmSd5F4iRYJsTFTxymBxCm2I9G_J6ioLFiNRnPuvTNDyC6DIwacHaPOU4gFsDUyYAmHKM0yvk4GACAiLgE2yZb37wCMAUsH5HXcYF1HJ3ZWG_ocOVzQscYQjKvsjN4a9J0zjbHBU7QFvW5wZuij0a31wXU6VK2l0wUNb4be4lfVdA29sMG180UvDm9tsU02Sqy92fmtQ_J0eTE5G0U391fXZyc3EcZMhigVIo1jSKXgOWA2FfFUSJbnpujbssgKjknMc17iNM41otSMlUlWysRwkEUphmRv6Tt37WdnfFDvbedsH6k4k1mSCS576HAJadd670yp5q5q0C0UA_XzP7X6X8_u_xqi11iXDq2u_ErAkzRLenJIoiVW-WC-VmN0H6o_RiZq8jBWL_L0nJ_ejRTv-YMlj9r_rfg__hvaQIkK</recordid><startdate>19970215</startdate><enddate>19970215</enddate><creator>Sasanuma, Yuji</creator><creator>Law, Robert V</creator><creator>Kobayashi, Yuji</creator><creator>Sasaki, Katsunari</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>19970215</creationdate><title>Small-Angle X-ray Scattering Measurements and Image Reconstruction by the Maximum Entropy Method</title><author>Sasanuma, Yuji ; Law, Robert V ; Kobayashi, Yuji ; Sasaki, Katsunari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-6336440673290a8b34b37199ed90afd8d2a54292fab49caa7c11f58f75e207df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Chemistry</topic><topic>Computers in experimental physics</topic><topic>Exact sciences and technology</topic><topic>Image processing</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Measurement</topic><topic>Physics</topic><topic>X- and γ-ray instruments and techniques</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasanuma, Yuji</creatorcontrib><creatorcontrib>Law, Robert V</creatorcontrib><creatorcontrib>Kobayashi, Yuji</creatorcontrib><creatorcontrib>Sasaki, Katsunari</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasanuma, Yuji</au><au>Law, Robert V</au><au>Kobayashi, Yuji</au><au>Sasaki, Katsunari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-Angle X-ray Scattering Measurements and Image Reconstruction by the Maximum Entropy Method</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>1997-02-15</date><risdate>1997</risdate><volume>69</volume><issue>4</issue><spage>794</spage><epage>800</epage><pages>794-800</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>For rapid small-angle X-ray scattering (SAXS) measurements in laboratories, we have designed and assembled a SAXS measurement system, which includes a new point-focusing camera using a doubly curved monochromator of a W/Si multilayer. As the two-dimensional detector and the X-ray source, an imaging plate (IP) and a rotating-anode generator operated at 40 kV and 30 mA with a microfocus of 0.1 × 0.1 mm2 are used. As an example of time-resolved SAXS measurements with our system, an observation of smectic A-nematic transition of a thermotropic liquid crystal 4-[(2‘-methylbutyl)phenyl]-4‘-n-octylbiphenyl-4-carboxylate is reported. To correct the broadening due to the beam divergence and enhance the signal-to-noise ratio of the data, two-dimensional deconvolution based on the maximum entropy method (MaxEnt) has been employed. A SAXS image of a uniaxially extended high-density polyethylene film was reconstructed from noisy data obtained by an X-ray exposure of only 3 s. The deconvolution was shown to give quantitative information regarding the position and breadth of the scattering maxima. It can be concluded that the combined use of the setup, IPs, and the MaxEnt processing facilitates rapid SAXS measurements with laboratory-based X-ray sources.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ac9604301</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 1997-02, Vol.69 (4), p.794-800 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_journals_217858327 |
source | ACS Publications |
subjects | Chemistry Computers in experimental physics Exact sciences and technology Image processing Instruments, apparatus, components and techniques common to several branches of physics and astronomy Measurement Physics X- and γ-ray instruments and techniques X-rays |
title | Small-Angle X-ray Scattering Measurements and Image Reconstruction by the Maximum Entropy Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T15%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-Angle%20X-ray%20Scattering%20Measurements%20and%20Image%20Reconstruction%20by%20the%20Maximum%20Entropy%20Method&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Sasanuma,%20Yuji&rft.date=1997-02-15&rft.volume=69&rft.issue=4&rft.spage=794&rft.epage=800&rft.pages=794-800&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac9604301&rft_dat=%3Cproquest_cross%3E11210020%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217858327&rft_id=info:pmid/&rfr_iscdi=true |