Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications

Spinel ferrites (SFs) show high potential in different aspects of modern technology. Particularly, copper ferrite represents a promising electrode material for supercapacitors and lithium based batteries. This paper is devoted to synthesizing and characterizing nanostructured copper substituted coba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2019-03, Vol.30 (5), p.4908-4919
Hauptverfasser: Maksoud, M. I. A. Abdel, El-ghandour, Ahmed, El-Sayyad, Gharieb S., Awed, A. S., Fahim, Ramy Amer, Atta, M. M., Ashour, A. H., El-Batal, Ahmed I., Gobara, Mohamed, Abdel-Khalek, E. K., El-Okr, M. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spinel ferrites (SFs) show high potential in different aspects of modern technology. Particularly, copper ferrite represents a promising electrode material for supercapacitors and lithium based batteries. This paper is devoted to synthesizing and characterizing nanostructured copper substituted cobalt ferrites using an eco-friendly sol–gel method. Energy dispersive X-ray (EDX) and FT-IR analyses confirm the chemical composition and the successful formation of the cubic phase of CuFe 2 O 4 , respectively. XRD analyses based on Williamson–Hall (W–H) method indicate that the average crystallite size drops from 25.1 to 12.1 nm dependent on the Cu 2+ content in the samples. Further, scanning electron microscopy (SEM) reveals that the CoFe 2 O 4 (CFO) has a honeycomb structure, which gradually disappears with the soaring of Cu 2+ content in the samples and converts to a porous sponge-like shape structure. The investigated copper substituted CFO holds a high specific surface area equals to 102.5139 m 2  g −1 which satisfies the contaminant adsorption applications. The measured DC resistivity (ρ DC  = 10 8  Ω m) is high enough to meet the requirements of transformer cores applications. Due to the difference in the magnetic moment between Cu 2+ and Co 2+ cations, the coercivity of the CFO significantly depends on the Cu 2+ content; it has declined by more than 50% for the system Co 0.25 Cu 0.75 Fe 2 O 4 in comparison to the pure CFO (H c  = 1617.30 Gauss).
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-019-00785-4