The critical behavior of the two-dimensional three-state Potts model on a triangular lattice with quenched disorder

•Calculated static critical exponents of 2D disordered Potts model.•Detected the independence of critical exponent relations for β/ν and γ/ν.•Shown the weak universality of the critical behavior of 2D disordered Potts model. The critical behavior of the two-dimensional three-state antiferromagnetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials letters 2019-03, Vol.238, p.321-323
Hauptverfasser: Murtazaev, Akai K., Babaev, Albert B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Calculated static critical exponents of 2D disordered Potts model.•Detected the independence of critical exponent relations for β/ν and γ/ν.•Shown the weak universality of the critical behavior of 2D disordered Potts model. The critical behavior of the two-dimensional three-state antiferromagnetic Potts model with quenched disorder on a triangular lattice is investigated by the Monte Carlo method. Static critical exponents for the susceptibility γ, the magnetization β, the specific heat α, and the exponent of the correlation radius ν at spin concentrations p = 0.90; 0.80; 0.70; 0.65 are calculated on the basis of the finite-size scaling theory. The critical exponents are found to be increasing with a rise in disorder without violating the feasibility of scaling equation 2βν+γν=d, while relations γ/ν and β/ν remain unchanged. This behavior of the critical exponents we have come to associate with the weak universality of a critical behavior typical for disordered systems.
ISSN:0167-577X
1873-4979
DOI:10.1016/j.matlet.2018.12.030