On symmetric linear games

In this paper, we generalize classical von Neumann symmetrization of two-person zero-sum games to general linear games. We use this symmetrization to show that for a given general linear game there exists a symmetric linear game whose solution yields a solution to the underlying linear game. We defi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2019-02, Vol.562, p.44-54
Hauptverfasser: Gokulraj, S., Chandrashekaran, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue
container_start_page 44
container_title Linear algebra and its applications
container_volume 562
creator Gokulraj, S.
Chandrashekaran, A.
description In this paper, we generalize classical von Neumann symmetrization of two-person zero-sum games to general linear games. We use this symmetrization to show that for a given general linear game there exists a symmetric linear game whose solution yields a solution to the underlying linear game. We define symmetric linear games of type gRPS (generalized Rock–Paper–Scissors) and prove that a symmetric linear game has a pure strategy equilibrium if and only if it is not a gRPS game. From this we deduce that a completely mixed symmetric linear game is gRPS.
doi_str_mv 10.1016/j.laa.2018.10.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2178125179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518304786</els_id><sourcerecordid>2178125179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-cccdcb795c6896daf342a7c5788183426cdcc117a274ec614d5a8a3ab1fc11893</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIH9BaJc4LXSWxHnFDFS6rUC5wtd7NBjvIodorUv8dROHPa18zs7jC2AZ4BB_nQZp21meCgY51xXlywFWiVp6BLeclWnIsizVVVXrObEFoeEYqLFdvshySc-54m7zDp3EDWJ1-2p3DLrhrbBbr7i2v2-fL8sX1Ld_vX9-3TLsVc6ilFxBoPURilrmRtm7wQVmGptAYdcxnHCKCsUAWhhKIurba5PUAT27rK1-x-0T368ftEYTLtePJDXGkEKA2iBDWjYEGhH0Pw1Jijd731ZwPczA6Y1kQHzOzA3Ir_Rc7jwqF4_o8jbwI6GpBq5wknU4_uH_YvtEdhVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178125179</pqid></control><display><type>article</type><title>On symmetric linear games</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gokulraj, S. ; Chandrashekaran, A.</creator><creatorcontrib>Gokulraj, S. ; Chandrashekaran, A.</creatorcontrib><description>In this paper, we generalize classical von Neumann symmetrization of two-person zero-sum games to general linear games. We use this symmetrization to show that for a given general linear game there exists a symmetric linear game whose solution yields a solution to the underlying linear game. We define symmetric linear games of type gRPS (generalized Rock–Paper–Scissors) and prove that a symmetric linear game has a pure strategy equilibrium if and only if it is not a gRPS game. From this we deduce that a completely mixed symmetric linear game is gRPS.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.10.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Economic models ; Game theory ; Games ; Linear algebra ; Pure equilibrium ; Rock–Paper–Scissors game ; Symmetric two-player game ; Zero sum games ; Zero-sum linear game</subject><ispartof>Linear algebra and its applications, 2019-02, Vol.562, p.44-54</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Feb 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-cccdcb795c6896daf342a7c5788183426cdcc117a274ec614d5a8a3ab1fc11893</citedby><cites>FETCH-LOGICAL-c368t-cccdcb795c6896daf342a7c5788183426cdcc117a274ec614d5a8a3ab1fc11893</cites><orcidid>0000-0002-7015-2005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379518304786$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gokulraj, S.</creatorcontrib><creatorcontrib>Chandrashekaran, A.</creatorcontrib><title>On symmetric linear games</title><title>Linear algebra and its applications</title><description>In this paper, we generalize classical von Neumann symmetrization of two-person zero-sum games to general linear games. We use this symmetrization to show that for a given general linear game there exists a symmetric linear game whose solution yields a solution to the underlying linear game. We define symmetric linear games of type gRPS (generalized Rock–Paper–Scissors) and prove that a symmetric linear game has a pure strategy equilibrium if and only if it is not a gRPS game. From this we deduce that a completely mixed symmetric linear game is gRPS.</description><subject>Economic models</subject><subject>Game theory</subject><subject>Games</subject><subject>Linear algebra</subject><subject>Pure equilibrium</subject><subject>Rock–Paper–Scissors game</subject><subject>Symmetric two-player game</subject><subject>Zero sum games</subject><subject>Zero-sum linear game</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIH9BaJc4LXSWxHnFDFS6rUC5wtd7NBjvIodorUv8dROHPa18zs7jC2AZ4BB_nQZp21meCgY51xXlywFWiVp6BLeclWnIsizVVVXrObEFoeEYqLFdvshySc-54m7zDp3EDWJ1-2p3DLrhrbBbr7i2v2-fL8sX1Ld_vX9-3TLsVc6ilFxBoPURilrmRtm7wQVmGptAYdcxnHCKCsUAWhhKIurba5PUAT27rK1-x-0T368ftEYTLtePJDXGkEKA2iBDWjYEGhH0Pw1Jijd731ZwPczA6Y1kQHzOzA3Ir_Rc7jwqF4_o8jbwI6GpBq5wknU4_uH_YvtEdhVQ</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Gokulraj, S.</creator><creator>Chandrashekaran, A.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7015-2005</orcidid></search><sort><creationdate>20190201</creationdate><title>On symmetric linear games</title><author>Gokulraj, S. ; Chandrashekaran, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-cccdcb795c6896daf342a7c5788183426cdcc117a274ec614d5a8a3ab1fc11893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Economic models</topic><topic>Game theory</topic><topic>Games</topic><topic>Linear algebra</topic><topic>Pure equilibrium</topic><topic>Rock–Paper–Scissors game</topic><topic>Symmetric two-player game</topic><topic>Zero sum games</topic><topic>Zero-sum linear game</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gokulraj, S.</creatorcontrib><creatorcontrib>Chandrashekaran, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gokulraj, S.</au><au>Chandrashekaran, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On symmetric linear games</atitle><jtitle>Linear algebra and its applications</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>562</volume><spage>44</spage><epage>54</epage><pages>44-54</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In this paper, we generalize classical von Neumann symmetrization of two-person zero-sum games to general linear games. We use this symmetrization to show that for a given general linear game there exists a symmetric linear game whose solution yields a solution to the underlying linear game. We define symmetric linear games of type gRPS (generalized Rock–Paper–Scissors) and prove that a symmetric linear game has a pure strategy equilibrium if and only if it is not a gRPS game. From this we deduce that a completely mixed symmetric linear game is gRPS.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.10.004</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7015-2005</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2019-02, Vol.562, p.44-54
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2178125179
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Economic models
Game theory
Games
Linear algebra
Pure equilibrium
Rock–Paper–Scissors game
Symmetric two-player game
Zero sum games
Zero-sum linear game
title On symmetric linear games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20symmetric%20linear%20games&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Gokulraj,%20S.&rft.date=2019-02-01&rft.volume=562&rft.spage=44&rft.epage=54&rft.pages=44-54&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.10.004&rft_dat=%3Cproquest_cross%3E2178125179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2178125179&rft_id=info:pmid/&rft_els_id=S0024379518304786&rfr_iscdi=true