On symmetric linear games

In this paper, we generalize classical von Neumann symmetrization of two-person zero-sum games to general linear games. We use this symmetrization to show that for a given general linear game there exists a symmetric linear game whose solution yields a solution to the underlying linear game. We defi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2019-02, Vol.562, p.44-54
Hauptverfasser: Gokulraj, S., Chandrashekaran, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we generalize classical von Neumann symmetrization of two-person zero-sum games to general linear games. We use this symmetrization to show that for a given general linear game there exists a symmetric linear game whose solution yields a solution to the underlying linear game. We define symmetric linear games of type gRPS (generalized Rock–Paper–Scissors) and prove that a symmetric linear game has a pure strategy equilibrium if and only if it is not a gRPS game. From this we deduce that a completely mixed symmetric linear game is gRPS.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2018.10.004