On symmetric linear games
In this paper, we generalize classical von Neumann symmetrization of two-person zero-sum games to general linear games. We use this symmetrization to show that for a given general linear game there exists a symmetric linear game whose solution yields a solution to the underlying linear game. We defi...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2019-02, Vol.562, p.44-54 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we generalize classical von Neumann symmetrization of two-person zero-sum games to general linear games. We use this symmetrization to show that for a given general linear game there exists a symmetric linear game whose solution yields a solution to the underlying linear game. We define symmetric linear games of type gRPS (generalized Rock–Paper–Scissors) and prove that a symmetric linear game has a pure strategy equilibrium if and only if it is not a gRPS game. From this we deduce that a completely mixed symmetric linear game is gRPS. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2018.10.004 |