A Novel Approach to Septal Perforation Repair: Septal Cartilage Cells Induce Chondrogenesis of hASCs In Vitro

The aim of this study was to investigate the effect of medium harvested from septal cartilage cells on chondrogenic differentiation of adipose stem cells (hASCs) and to compare/contrast its properties to those of a commonly used standard medium formulation in terms of induction and maintenance of ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2019-08, Vol.188 (4), p.942-951
Hauptverfasser: Şafak, Ayşe Sezim, Avşar Abdik, Ezgi, Abdik, Hüseyin, Taşlı, Pakize Neslihan, Şahin, Fikrettin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to investigate the effect of medium harvested from septal cartilage cells on chondrogenic differentiation of adipose stem cells (hASCs) and to compare/contrast its properties to those of a commonly used standard medium formulation in terms of induction and maintenance of chondrogenic hASCs. Differentiation was carried out under three different conditions: septal cartilage medium-SCM, chondrogenic differentiation medium-CM, and 50:50 mixture of CM/SCM. Mesenchymal stem cells (MSCs) markers were determined by flow cytometry. The cytotoxic and apoptotic effects were determined by MTS and Annexin V assay, respectively. The differentiation status of the cells was confirmed by Alcian blue staining, and quantitative real-time flow cytometry showed that hASCs were positive for MSCs, negative for hematopoietic stem cells and endothelial cell surface markers. According to MTS analysis, the first condition was not toxic at any concentration tested. Annexin V assay revealed that the application of different concentrations of SCM did not result in any cell death. The Alcian blue and gene expression analyses showed that the cells in the SCM group underwent the highest cartilage cell formation. The observed increase in chondrogenesis may offer better treatment options for the cartilage defects seen in nasal septum perforation.
ISSN:0273-2289
1559-0291
DOI:10.1007/s12010-019-02964-9