Artificial Intelligence for Prosthetics - challenge solutions

In the NeurIPS 2018 Artificial Intelligence for Prosthetics challenge, participants were tasked with building a controller for a musculoskeletal model with a goal of matching a given time-varying velocity vector. Top participants were invited to describe their algorithms. In this work, we describe t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-02
Hauptverfasser: Kidziński, Łukasz, Carmichael Ong, Sharada Prasanna Mohanty, Hicks, Jennifer, Carroll, Sean F, Zhou, Bo, Zeng, Hongsheng, Wang, Fan, Lian, Rongzhong, Tian, Hao, Jaśkowski, Wojciech, Andersen, Garrett, Lykkebø, Odd Rune, Toklu, Nihat Engin, Shyam, Pranav, Srivastava, Rupesh Kumar, Kolesnikov, Sergey, Hrinchuk, Oleksii, Pechenko, Anton, Ljungström, Mattias, Wang, Zhen, Hu, Xu, Hu, Zehong, Qiu, Minghui, Huang, Jun, Shpilman, Aleksei, Sosin, Ivan, Svidchenko, Oleg, Malysheva, Aleksandra, Kudenko, Daniel, Rane, Lance, Bhatt, Aditya, Wang, Zhengfei, Penghui Qi, Yu, Zeyang, Peng, Peng, Yuan, Quan, Li, Wenxin, Tian, Yunsheng, Yang, Ruihan, Ma, Pingchuan, Khadka, Shauharda, Majumdar, Somdeb, Dwiel, Zach, Liu, Yinyin, Tumer, Evren, Watson, Jeremy, Salathé, Marcel, Levine, Sergey, Delp, Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the NeurIPS 2018 Artificial Intelligence for Prosthetics challenge, participants were tasked with building a controller for a musculoskeletal model with a goal of matching a given time-varying velocity vector. Top participants were invited to describe their algorithms. In this work, we describe the challenge and present thirteen solutions that used deep reinforcement learning approaches. Many solutions use similar relaxations and heuristics, such as reward shaping, frame skipping, discretization of the action space, symmetry, and policy blending. However, each team implemented different modifications of the known algorithms by, for example, dividing the task into subtasks, learning low-level control, or by incorporating expert knowledge and using imitation learning.
ISSN:2331-8422