Advances on CNN-based super-resolution of Sentinel-2 images

Thanks to their temporal-spatial coverage and free access, Sentinel-2 images are very interesting for the community. However, a relatively coarse spatial resolution, compared to that of state-of-the-art commercial products, motivates the study of super-resolution techniques to mitigate such a limita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-02
1. Verfasser: Gargiulo, Massimiliano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thanks to their temporal-spatial coverage and free access, Sentinel-2 images are very interesting for the community. However, a relatively coarse spatial resolution, compared to that of state-of-the-art commercial products, motivates the study of super-resolution techniques to mitigate such a limitation. Specifically, thirtheen bands are sensed simultaneously but at different spatial resolutions: 10, 20, and 60 meters depending on the spectral location. Here, building upon our previous convolutional neural network (CNN) based method, we propose an improved CNN solution to super-resolve the 20-m resolution bands benefiting spatial details conveyed by the accompanying 10-m spectral bands.
ISSN:2331-8422