Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae
BACKGROUND In this study, five microalgal species (Chlorella vulgaris, Chlorococcum sp. GD, Parachlorella kessleri TY, Scenedesmus quadricauda, and Scenedesmus obliquus) were cultivated in batch mode to evaluate their respective potential for the treatment of real aquaculture wastewater from a fishe...
Gespeichert in:
Veröffentlicht in: | Journal of chemical technology and biotechnology (1986) 2019-03, Vol.94 (3), p.900-910 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BACKGROUND
In this study, five microalgal species (Chlorella vulgaris, Chlorococcum sp. GD, Parachlorella kessleri TY, Scenedesmus quadricauda, and Scenedesmus obliquus) were cultivated in batch mode to evaluate their respective potential for the treatment of real aquaculture wastewater from a fishery. Subsequently, the microalga with the best performance was cultivated with different initial inoculation concentrations to evaluate the effect of initial inoculation on pollutant removal efficiency.
RESULTS
When real aquaculture wastewater was inoculated with exogenous microalgae, the growth of both indigenous microalgae and bacteria was significantly inhibited. Pollutant removal was closely related to exogenous inoculation of microalgae. Parachlorella kessleri TY had high growth potential and pollutant removal capability in aquaculture wastewater, compared with the other four microalgae. When the wastewater was inoculated with low biomass concentrations of P. kessleri TY (50–100 mg L−1), it grew well and degraded most of the encountered pollutant. In particular, P. kessleri TY with 100 mg L−1 of inoculation concentration removed 94.4% of COD, 96.2% of ammonium, 99% of nitrite, 94.3% of nitrate, and 95.6% of phosphorus after 3 days of cultivation.
CONCLUSIONS
Both the screening for microalgal species and the regulation of initial inoculation concentrations are promising approaches to enhance pollutant removal efficiency from real aquaculture wastewater. © 2018 Society of Chemical Industry |
---|---|
ISSN: | 0268-2575 1097-4660 |
DOI: | 10.1002/jctb.5837 |