Direct blending of multicolor carbon quantum dots into fluorescent films for white light emitting diodes with an adjustable correlated color temperature
White light-emitting diodes (WLEDs) with a high color rendering index (CRI) and an adjustable correlated color temperature (CCT) are of great importance in a wide range of fields. We report an efficient method to fabricate WLEDs with prominent CCT performance by the combination of multi-colour carbo...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2019, Vol.7 (6), p.1502-1509 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | White light-emitting diodes (WLEDs) with a high color rendering index (CRI) and an adjustable correlated color temperature (CCT) are of great importance in a wide range of fields. We report an efficient method to fabricate WLEDs with prominent CCT performance by the combination of multi-colour carbon quantum dots (CQDs). Long-wavelength CQDs with green, yellow and orange emission (denoted as G-, Y-, and O-CQDs, respectively) were obtained by a one-pot solvothermal reaction between phthalic acid and
o
-phenylenediamine followed by precise separation by silica column chromatography. Systematic investigation and detailed characterization demonstrate that G- and Y-CQDs emit mainly due to the quantum size effect, while the photoluminescence emission of O-CQDs is mainly derived from surface defect states formed by surface oxidation. Subsequently, solid-state luminous red-green-blue CQD films obtained by using tri-functional blue emitting CQDs (phosphors, dispersants and curing agents) lead to UV-pumped WLEDs with good color stability and a high CRI (83–88) as well as an adjustable CCT (3466–7368 K). This work has opened up new avenues for the development of low-cost, environmentally-friendly and high-performance CQD phosphor-based WLEDs. |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/C8TC04887H |