New combinational therapies for cancer using modern statistical mechanics

We investigate a new dynamical system that describes tumor-host interaction. The equation that describes the untreated tumor growth is based on non-extensive statistical mechanics. Recently, this model has been shown to fit successfully exponential, Gompertz, logistic, and power-law tumor growths. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-02
Hauptverfasser: González, Jorge A, Acanda, M, Akhtar, Z, Andrews, D, Azqueta, J I, Bass, E, Bellorín, A, Couso, J, García-Ñustes, Mónica A, Infante, Y, Jiménez, S, Lester, L, Maldonado, L, Marín, Juan F, Pineda, L, Rodríguez, I, Tamayo, C C, Valdes, D, Vázquez, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate a new dynamical system that describes tumor-host interaction. The equation that describes the untreated tumor growth is based on non-extensive statistical mechanics. Recently, this model has been shown to fit successfully exponential, Gompertz, logistic, and power-law tumor growths. We have been able to include as many hallmarks of cancer as possible. We study also the dynamic response of cancer under therapy. Using our model, we can make predictions about the different outcomes when we change the parameters, and/or the initial conditions. We can determine the importance of different factors to influence tumor growth. We discover synergistic therapeutic effects of different treatments and drugs. Cancer is generally untreatable using conventional monotherapy. We consider conventional therapies, oncogene-targeted therapies, tumor-suppressors gene-targeted therapies, immunotherapies, anti-angiogenesis therapies, virotherapy, among others. We need therapies with the potential to target both tumor cells and the tumors' microenvironment. Drugs that target oncogenes and tumor-suppressor genes can be effective in the treatment of some cancers. However, most tumors do reoccur. We have found that the success of the new therapeutic agents can be seen when used in combination with other cancer-cell-killing therapies. Our results have allowed us to design a combinational therapy that can lead to the complete eradication of cancer.
ISSN:2331-8422