Helical core formation and evolution during current ramp-up in the high-field tokamak Alcator C-Mod
Large, spontaneous m/n = 1/1 helical cores are predicted in tokamaks with extended regions of low- or reversed-magnetic shear profiles in a region within the q = 1 surface and an onset condition determined by constant (dp/dρ)/Bt2 along the threshold. These 3D modes occurred frequently in Alcator C-M...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2019-02, Vol.26 (2) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Large, spontaneous m/n = 1/1 helical cores are predicted in tokamaks with extended regions of low- or reversed-magnetic shear profiles in a region within the q = 1 surface and an onset condition determined by constant
(dp/dρ)/Bt2 along the threshold. These 3D modes occurred frequently in Alcator C-Mod during ramp-up when slow current penetration results in a reversed shear q-profile. The onset and early development of a helical core in C-Mod were simulated using a new 3D time-dependent equilibrium reconstruction, based on the ideal MHD equilibrium code VMEC. The reconstruction used the experimental density, temperature, and soft-X-ray fluctuations. The pressure profile can become hollow due to an inverted, hollow electron temperature profile caused by molybdenum radiation in the plasma core during the current ramp-up phase before the onset of sawteeth, which may also occur in ITER with tungsten. Based on modeling, it is found that a reverse shear q-profile combined with a hollow pressure profile reduces the onset condition threshold, enabling helical core formation from an otherwise axisymmetric equilibrium. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.5083055 |