Removal of Cr(VI) by magnetic Fe/C crosslinked nanoparticle for water purification: rapid contaminant removal property and mechanism of action

In this study, a novel method based on the magnetic Fe/C crosslinked nanoparticles (MNZVI/CNTs-OH) is reported for the effective removal of Cr(VI) in aqueous solutions. Parameters that influence the effectiveness of the nanoparticles, such as pH, temperature, reaction time, and particle dosage, was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2018-12, Vol.78 (10), p.2171-2182
Hauptverfasser: Chen, Runhua, Wang, Ping, Li, Meng, Tian, Fei, Xiao, Jiangjun, Fu, Xinxi, Ding, Chunlian, Shi, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a novel method based on the magnetic Fe/C crosslinked nanoparticles (MNZVI/CNTs-OH) is reported for the effective removal of Cr(VI) in aqueous solutions. Parameters that influence the effectiveness of the nanoparticles, such as pH, temperature, reaction time, and particle dosage, was analyzed. It was found that MNZVI/CNTs-OH particles exhibit significantly higher activity toward Cr(VI) removal than bare NZVI, carbon nanotubes (CNTs), and other synthetic nanomaterials. Under optimized conditions, the removal efficiency of Cr(VI) by MNZVI/CNTs-OH is up to 98% with an initial contaminant concentration of 50 mg/L, and chromium content in the residue up to 48 mg/g. Physical characterizations, including Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and TG-TD measurements, provide insights into the working mechanism of Cr(VI) purification. Our findings suggest that immobilization of MNZVI onto carbon nanotubes increase the covalent bond property, while crosslinked nanoparticles (NPs) provide the electron transfer passage from the NZVI surface and improves the dispersity of the MNZVI, thus enhancing the performance. These results demonstrate the potential of the MNZVI/CNTs-OH nanoparticles for the rapid and efficient treatment of Cr(VI)-containing wastewater.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2018.497