Data‐driven distributionally robust optimization of shale gas supply chains under uncertainty

This article aims to leverage the big data in shale gas industry for better decision making in optimal design and operations of shale gas supply chains under uncertainty. We propose a two‐stage distributionally robust optimization model, where uncertainties associated with both the upstream shale we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2019-03, Vol.65 (3), p.947-963
Hauptverfasser: Gao, Jiyao, Ning, Chao, You, Fengqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article aims to leverage the big data in shale gas industry for better decision making in optimal design and operations of shale gas supply chains under uncertainty. We propose a two‐stage distributionally robust optimization model, where uncertainties associated with both the upstream shale well estimated ultimate recovery and downstream market demand are simultaneously considered. In this model, decisions are classified into first‐stage design decisions, which are related to drilling schedule, pipeline installment, and processing plant construction, as well as second‐stage operational decisions associated with shale gas production, processing, transportation, and distribution. A data‐driven approach is applied to construct the ambiguity set based on principal component analysis and first‐order deviation functions. By taking advantage of affine decision rules, a tractable mixed‐integer linear programming formulation can be obtained. The applicability of the proposed modeling framework is demonstrated through a small‐scale illustrative example and a case study of Marcellus shale gas supply chain. Comparisons with alternative optimization models, including the deterministic and stochastic programming counterparts, are investigated as well. © 2018 American Institute of Chemical Engineers AIChE J, 65: 947–963, 2019
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.16488