A NOTE ON NILPOTENT-BY-ČERNIKOV GROUPS

In this note we prove that a locally graded group $G$ in which all proper subgroups are (nilpotent of class not exceeding $n$)-by-Černikov, is itself (nilpotent of class not exceeding $n$)-by-Černikov. As a preparatory result that is used for the proof of the former statement in the case of a period...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2004-05, Vol.46 (2), p.211-215
Hauptverfasser: BRUNO, BRUNELLA, NAPOLITANI, FRANCO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue 2
container_start_page 211
container_title Glasgow mathematical journal
container_volume 46
creator BRUNO, BRUNELLA
NAPOLITANI, FRANCO
description In this note we prove that a locally graded group $G$ in which all proper subgroups are (nilpotent of class not exceeding $n$)-by-Černikov, is itself (nilpotent of class not exceeding $n$)-by-Černikov. As a preparatory result that is used for the proof of the former statement in the case of a periodic group, we also prove that a group $G$, containing a nilpotent of class $n$ subgroup of finite index, also contains a characteristic subgroup of finite index that is nilpotent of class not exceeding $n$.
doi_str_mv 10.1017/S0017089504001703
format Article
fullrecord <record><control><sourceid>proquest_istex</sourceid><recordid>TN_cdi_proquest_journals_217506879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0017089504001703</cupid><sourcerecordid>1399601221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-13a1478e673f03af20d196b7d5fd7db406acb436e9902efe33da8038bfc40a573</originalsourceid><addsrcrecordid>eNplUMtOwzAQtBBIhMIHcIu4cDKs48SOj20V0qhVEvpAcLKc2EEplLZJKsE_8Fl8GC5F4sBld2Z3NCMNQpcEbggQfjsDOyEUAfg_iB4hh_hM4ADE4zFy9ke8_5-is7ZdWkotc9B1302zeeRmqZsmk9zCdI4HT_jrM5qmyTh7cONptshn5-ikUq-tufjdPbS4i-bDEZ5kcTLsT3DpMa_DhCri89AwTiugqvJAE8EKroNKc134wFRZ-JQZIcAzlaFUqxBoWFSlDyrgtIeuDr6bZr3dmbaTy_WuebOR0iM8ABZyYUX4IKrbzrzLTVOvVPMhVfMibTAPJIvv5WCchx6DXI6snh70pVoVTa2fzZ8rAbkvUP4rkH4DBdxc4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217506879</pqid></control><display><type>article</type><title>A NOTE ON NILPOTENT-BY-ČERNIKOV GROUPS</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>BRUNO, BRUNELLA ; NAPOLITANI, FRANCO</creator><creatorcontrib>BRUNO, BRUNELLA ; NAPOLITANI, FRANCO</creatorcontrib><description>In this note we prove that a locally graded group $G$ in which all proper subgroups are (nilpotent of class not exceeding $n$)-by-Černikov, is itself (nilpotent of class not exceeding $n$)-by-Černikov. As a preparatory result that is used for the proof of the former statement in the case of a periodic group, we also prove that a group $G$, containing a nilpotent of class $n$ subgroup of finite index, also contains a characteristic subgroup of finite index that is nilpotent of class not exceeding $n$.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089504001703</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Primary 20F19 ; Secondary 20F22</subject><ispartof>Glasgow mathematical journal, 2004-05, Vol.46 (2), p.211-215</ispartof><rights>2004 Glasgow Mathematical Journal Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0017089504001703/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55607</link.rule.ids></links><search><creatorcontrib>BRUNO, BRUNELLA</creatorcontrib><creatorcontrib>NAPOLITANI, FRANCO</creatorcontrib><title>A NOTE ON NILPOTENT-BY-ČERNIKOV GROUPS</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>In this note we prove that a locally graded group $G$ in which all proper subgroups are (nilpotent of class not exceeding $n$)-by-Černikov, is itself (nilpotent of class not exceeding $n$)-by-Černikov. As a preparatory result that is used for the proof of the former statement in the case of a periodic group, we also prove that a group $G$, containing a nilpotent of class $n$ subgroup of finite index, also contains a characteristic subgroup of finite index that is nilpotent of class not exceeding $n$.</description><subject>Primary 20F19</subject><subject>Secondary 20F22</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplUMtOwzAQtBBIhMIHcIu4cDKs48SOj20V0qhVEvpAcLKc2EEplLZJKsE_8Fl8GC5F4sBld2Z3NCMNQpcEbggQfjsDOyEUAfg_iB4hh_hM4ADE4zFy9ke8_5-is7ZdWkotc9B1302zeeRmqZsmk9zCdI4HT_jrM5qmyTh7cONptshn5-ikUq-tufjdPbS4i-bDEZ5kcTLsT3DpMa_DhCri89AwTiugqvJAE8EKroNKc134wFRZ-JQZIcAzlaFUqxBoWFSlDyrgtIeuDr6bZr3dmbaTy_WuebOR0iM8ABZyYUX4IKrbzrzLTVOvVPMhVfMibTAPJIvv5WCchx6DXI6snh70pVoVTa2fzZ8rAbkvUP4rkH4DBdxc4w</recordid><startdate>200405</startdate><enddate>200405</enddate><creator>BRUNO, BRUNELLA</creator><creator>NAPOLITANI, FRANCO</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200405</creationdate><title>A NOTE ON NILPOTENT-BY-ČERNIKOV GROUPS</title><author>BRUNO, BRUNELLA ; NAPOLITANI, FRANCO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-13a1478e673f03af20d196b7d5fd7db406acb436e9902efe33da8038bfc40a573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Primary 20F19</topic><topic>Secondary 20F22</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BRUNO, BRUNELLA</creatorcontrib><creatorcontrib>NAPOLITANI, FRANCO</creatorcontrib><collection>Istex</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BRUNO, BRUNELLA</au><au>NAPOLITANI, FRANCO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NOTE ON NILPOTENT-BY-ČERNIKOV GROUPS</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2004-05</date><risdate>2004</risdate><volume>46</volume><issue>2</issue><spage>211</spage><epage>215</epage><pages>211-215</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>In this note we prove that a locally graded group $G$ in which all proper subgroups are (nilpotent of class not exceeding $n$)-by-Černikov, is itself (nilpotent of class not exceeding $n$)-by-Černikov. As a preparatory result that is used for the proof of the former statement in the case of a periodic group, we also prove that a group $G$, containing a nilpotent of class $n$ subgroup of finite index, also contains a characteristic subgroup of finite index that is nilpotent of class not exceeding $n$.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089504001703</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-0895
ispartof Glasgow mathematical journal, 2004-05, Vol.46 (2), p.211-215
issn 0017-0895
1469-509X
language eng
recordid cdi_proquest_journals_217506879
source EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete
subjects Primary 20F19
Secondary 20F22
title A NOTE ON NILPOTENT-BY-ČERNIKOV GROUPS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NOTE%20ON%20NILPOTENT-BY-%C4%8CERNIKOV%20GROUPS&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=BRUNO,%20BRUNELLA&rft.date=2004-05&rft.volume=46&rft.issue=2&rft.spage=211&rft.epage=215&rft.pages=211-215&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089504001703&rft_dat=%3Cproquest_istex%3E1399601221%3C/proquest_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217506879&rft_id=info:pmid/&rft_cupid=10_1017_S0017089504001703&rfr_iscdi=true