A NOTE ON NILPOTENT-BY-ČERNIKOV GROUPS

In this note we prove that a locally graded group $G$ in which all proper subgroups are (nilpotent of class not exceeding $n$)-by-Černikov, is itself (nilpotent of class not exceeding $n$)-by-Černikov. As a preparatory result that is used for the proof of the former statement in the case of a period...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2004-05, Vol.46 (2), p.211-215
Hauptverfasser: BRUNO, BRUNELLA, NAPOLITANI, FRANCO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note we prove that a locally graded group $G$ in which all proper subgroups are (nilpotent of class not exceeding $n$)-by-Černikov, is itself (nilpotent of class not exceeding $n$)-by-Černikov. As a preparatory result that is used for the proof of the former statement in the case of a periodic group, we also prove that a group $G$, containing a nilpotent of class $n$ subgroup of finite index, also contains a characteristic subgroup of finite index that is nilpotent of class not exceeding $n$.
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089504001703