On Resolvent Matrix, Dyukarev–Stieltjes Parameters and Orthogonal Matrix Polynomials via [0,∞)-Stieltjes Transformed Sequences
By using Schur transformed sequences and Dyukarev–Stieltjes parameters we obtain a new representation of the resolvent matrix corresponding to the truncated matricial Stieltjes moment problem. Explicit relations between orthogonal matrix polynomials and matrix polynomials of the second kind construc...
Gespeichert in:
Veröffentlicht in: | Complex analysis and operator theory 2019-02, Vol.13 (1), p.1-44 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By using Schur transformed sequences and Dyukarev–Stieltjes parameters we obtain a new representation of the resolvent matrix corresponding to the truncated matricial Stieltjes moment problem. Explicit relations between orthogonal matrix polynomials and matrix polynomials of the second kind constructed from consecutive Schur transformed sequences are obtained. Additionally, a non-negative Hermitian measure for which the matrix polynomials of the second kind are the orthogonal matrix polynomials is found. |
---|---|
ISSN: | 1661-8254 1661-8262 |
DOI: | 10.1007/s11785-017-0655-7 |