On generators of C 0-semigroups of composition operators

Avicou, Chalendar and Partington proved in 2015 [5] that an (unbounded) operator Af = G·f' on the classical Hardy space generates a C0 semigroup of composition operators if and only if it generates a quasicontractive semigroup. Here we prove that if such an operator A generates a C0 semigroup,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2019-01, Vol.229 (1), p.487-500
Hauptverfasser: Gallardo-Gutiérrez, Eva A, Yakubovich, Dmitry V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Avicou, Chalendar and Partington proved in 2015 [5] that an (unbounded) operator Af = G·f' on the classical Hardy space generates a C0 semigroup of composition operators if and only if it generates a quasicontractive semigroup. Here we prove that if such an operator A generates a C0 semigroup, then it is automatically a semigroup of composition operators, so that the condition of quasicontractivity of the semigroup in the cited result is not necessary. Our result applies to a rather general class of Banach spaces of analytic functions in the unit disc.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-018-1815-9