On generators of C 0-semigroups of composition operators
Avicou, Chalendar and Partington proved in 2015 [5] that an (unbounded) operator Af = G·f' on the classical Hardy space generates a C0 semigroup of composition operators if and only if it generates a quasicontractive semigroup. Here we prove that if such an operator A generates a C0 semigroup,...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2019-01, Vol.229 (1), p.487-500 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Avicou, Chalendar and Partington proved in 2015 [5] that an (unbounded) operator Af = G·f' on the classical Hardy space generates a C0 semigroup of composition operators if and only if it generates a quasicontractive semigroup. Here we prove that if such an operator A generates a C0 semigroup, then it is automatically a semigroup of composition operators, so that the condition of quasicontractivity of the semigroup in the cited result is not necessary. Our result applies to a rather general class of Banach spaces of analytic functions in the unit disc. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-018-1815-9 |