COMPARISON BETWEEN USUAL AND VECTOR TIME DERIVATIVES

We prove two comparison theorems between the time derivative of a real function $u(x, t)$ such that $u(\cdot,t)$ belongs to L$^1 (\Omega)$ for all $t$, and the time derivative of the vector function $\skew2\hat{u}(t) = u(\cdot, t)$.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2003-01, Vol.45 (1), p.167-172, Article S001708950200112X
1. Verfasser: LÓPEZ-POUSO, ÓSCAR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 1
container_start_page 167
container_title Glasgow mathematical journal
container_volume 45
creator LÓPEZ-POUSO, ÓSCAR
description We prove two comparison theorems between the time derivative of a real function $u(x, t)$ such that $u(\cdot,t)$ belongs to L$^1 (\Omega)$ for all $t$, and the time derivative of the vector function $\skew2\hat{u}(t) = u(\cdot, t)$.
doi_str_mv 10.1017/S001708950200112X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_217491124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S001708950200112X</cupid><sourcerecordid>1399594541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-b1b8e9c495e2ace3e7da09de8947945446b71dddaea257e6e8c688da86959b2d3</originalsourceid><addsrcrecordid>eNp1UE1PwkAQ3RhNRPQHeGu8V3e7X91jLSs2fFRoQW6bbXcxoAhuIdF_7xKIHoyXmXmZ9-bNDADXCN4iiPhdAX2EsaAw8hWKZieghQgTIYVidgpa-3a475-Di6ZZeog9agGS5oOnZJwV-TC4l-WzlMNgUkySfpAMO8FUpmU-DspsIIOOHGfTpMymsrgEZ3P91tirY26DyYMs08ewn3ezNOmHNRZ0G1aoiq2oiaA20rXFlhsNhbGxIFwQSgirODLGaKsjyi2zcc3i2OiYCSqqyOA2uDnM3bj1x842W7Vc79y7t1QR4kT4O4knoQOpduumcXauNm6x0u5LIaj2v1F_fuM14UGzaLb280eg3atiHHOqWHekeK836hEGFfZ8fPTQq8otzIv93eR_l2-Wv283</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217491124</pqid></control><display><type>article</type><title>COMPARISON BETWEEN USUAL AND VECTOR TIME DERIVATIVES</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>LÓPEZ-POUSO, ÓSCAR</creator><creatorcontrib>LÓPEZ-POUSO, ÓSCAR</creatorcontrib><description>We prove two comparison theorems between the time derivative of a real function $u(x, t)$ such that $u(\cdot,t)$ belongs to L$^1 (\Omega)$ for all $t$, and the time derivative of the vector function $\skew2\hat{u}(t) = u(\cdot, t)$.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S001708950200112X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>47D03 ; 47H20</subject><ispartof>Glasgow mathematical journal, 2003-01, Vol.45 (1), p.167-172, Article S001708950200112X</ispartof><rights>2003 Glasgow Mathematical Journal Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-b1b8e9c495e2ace3e7da09de8947945446b71dddaea257e6e8c688da86959b2d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S001708950200112X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>LÓPEZ-POUSO, ÓSCAR</creatorcontrib><title>COMPARISON BETWEEN USUAL AND VECTOR TIME DERIVATIVES</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>We prove two comparison theorems between the time derivative of a real function $u(x, t)$ such that $u(\cdot,t)$ belongs to L$^1 (\Omega)$ for all $t$, and the time derivative of the vector function $\skew2\hat{u}(t) = u(\cdot, t)$.</description><subject>47D03</subject><subject>47H20</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UE1PwkAQ3RhNRPQHeGu8V3e7X91jLSs2fFRoQW6bbXcxoAhuIdF_7xKIHoyXmXmZ9-bNDADXCN4iiPhdAX2EsaAw8hWKZieghQgTIYVidgpa-3a475-Di6ZZeog9agGS5oOnZJwV-TC4l-WzlMNgUkySfpAMO8FUpmU-DspsIIOOHGfTpMymsrgEZ3P91tirY26DyYMs08ewn3ezNOmHNRZ0G1aoiq2oiaA20rXFlhsNhbGxIFwQSgirODLGaKsjyi2zcc3i2OiYCSqqyOA2uDnM3bj1x842W7Vc79y7t1QR4kT4O4knoQOpduumcXauNm6x0u5LIaj2v1F_fuM14UGzaLb280eg3atiHHOqWHekeK836hEGFfZ8fPTQq8otzIv93eR_l2-Wv283</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>LÓPEZ-POUSO, ÓSCAR</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20030101</creationdate><title>COMPARISON BETWEEN USUAL AND VECTOR TIME DERIVATIVES</title><author>LÓPEZ-POUSO, ÓSCAR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-b1b8e9c495e2ace3e7da09de8947945446b71dddaea257e6e8c688da86959b2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>47D03</topic><topic>47H20</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LÓPEZ-POUSO, ÓSCAR</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LÓPEZ-POUSO, ÓSCAR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMPARISON BETWEEN USUAL AND VECTOR TIME DERIVATIVES</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>45</volume><issue>1</issue><spage>167</spage><epage>172</epage><pages>167-172</pages><artnum>S001708950200112X</artnum><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>We prove two comparison theorems between the time derivative of a real function $u(x, t)$ such that $u(\cdot,t)$ belongs to L$^1 (\Omega)$ for all $t$, and the time derivative of the vector function $\skew2\hat{u}(t) = u(\cdot, t)$.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S001708950200112X</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-0895
ispartof Glasgow mathematical journal, 2003-01, Vol.45 (1), p.167-172, Article S001708950200112X
issn 0017-0895
1469-509X
language eng
recordid cdi_proquest_journals_217491124
source EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete
subjects 47D03
47H20
title COMPARISON BETWEEN USUAL AND VECTOR TIME DERIVATIVES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMPARISON%20BETWEEN%20USUAL%20AND%20VECTOR%20TIME%20DERIVATIVES&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=L%C3%93PEZ-POUSO,%20%C3%93SCAR&rft.date=2003-01-01&rft.volume=45&rft.issue=1&rft.spage=167&rft.epage=172&rft.pages=167-172&rft.artnum=S001708950200112X&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S001708950200112X&rft_dat=%3Cproquest_cross%3E1399594541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217491124&rft_id=info:pmid/&rft_cupid=10_1017_S001708950200112X&rfr_iscdi=true