COMPARISON BETWEEN USUAL AND VECTOR TIME DERIVATIVES
We prove two comparison theorems between the time derivative of a real function $u(x, t)$ such that $u(\cdot,t)$ belongs to L$^1 (\Omega)$ for all $t$, and the time derivative of the vector function $\skew2\hat{u}(t) = u(\cdot, t)$.
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2003-01, Vol.45 (1), p.167-172, Article S001708950200112X |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove two comparison theorems between the time derivative of a real function $u(x, t)$ such that $u(\cdot,t)$ belongs to L$^1 (\Omega)$ for all $t$, and the time derivative of the vector function $\skew2\hat{u}(t) = u(\cdot, t)$. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S001708950200112X |