COMPARISON BETWEEN USUAL AND VECTOR TIME DERIVATIVES

We prove two comparison theorems between the time derivative of a real function $u(x, t)$ such that $u(\cdot,t)$ belongs to L$^1 (\Omega)$ for all $t$, and the time derivative of the vector function $\skew2\hat{u}(t) = u(\cdot, t)$.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2003-01, Vol.45 (1), p.167-172, Article S001708950200112X
1. Verfasser: LÓPEZ-POUSO, ÓSCAR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove two comparison theorems between the time derivative of a real function $u(x, t)$ such that $u(\cdot,t)$ belongs to L$^1 (\Omega)$ for all $t$, and the time derivative of the vector function $\skew2\hat{u}(t) = u(\cdot, t)$.
ISSN:0017-0895
1469-509X
DOI:10.1017/S001708950200112X