A Small-Gain Approach for Nonpassive Bilateral Telerobotic Rehabilitation: Stability Analysis and Controller Synthesis

In this paper, the design of a novel bilateral telerobotic architecture for rehabilitation purposes is proposed and the related feasibility, stability, and control challenges are studied. The objective is to incorporate the supervision of a local/remote human physiotherapist into haptics-enabled reh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2017-02, Vol.33 (1), p.49-66
Hauptverfasser: Atashzar, Seyed Farokh, Polushin, Ilia G., Patel, Rajnikant V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue 1
container_start_page 49
container_title IEEE transactions on robotics
container_volume 33
creator Atashzar, Seyed Farokh
Polushin, Ilia G.
Patel, Rajnikant V.
description In this paper, the design of a novel bilateral telerobotic architecture for rehabilitation purposes is proposed and the related feasibility, stability, and control challenges are studied. The objective is to incorporate the supervision of a local/remote human physiotherapist into haptics-enabled rehabilitation systems and allow the therapist to provide nonpassive nonlinear assistive/resistive forces in response to the patient's movements. This can address a challenge of conventional software-based rehabilitation systems, i.e., limited capability in adjusting the therapy. To guarantee human-robot interaction safety, a new design framework and a stabilizing controller are developed based on the small-gain approach. System stability and transparency are analyzed in the presence of the nonpassive, nonlinear, and nonautonomous behavior of the terminals (the therapist and the patient) and time-varying delays for the case of remote and cloud-based therapy. Several practical considerations have been taken into account to match the clinical needs and minimize the implementation cost. Simulation studies, practical implementation, and experimental evaluations are presented.
doi_str_mv 10.1109/TRO.2016.2623336
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174471498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7778241</ieee_id><sourcerecordid>2174471498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-50bd91d20711d823fcda506e6a496359b8252b77bff5adbe6ff4e39534cb6fd33</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKfvgi8Bnzvz1bTxrQ6dwnCwzeeStgnLyJqaZIP-93Z0-HTv5Z5zOfcHwCNGM4yReNmuVzOCMJ8RTiil_ApMsGA4QYzn10OfpiShSOS34C6EPUKECUQn4FTAzUFamyykaWHRdd7Jege18_DbtZ0MwZwUfDNWRuWlhVtllXeVi6aGa7WTlbEmymhc-wo3cRx7WLTS9sEEKNsGzl0bvbODD276Nu7UsLgHN1raoB4udQp-Pt63889kuVp8zYtlUhOBY5KiqhG4ISjDuMkJ1XUjU8QVl0xwmooqJympsqzSOpVNpbjWTFGRUlZXXDeUTsHzeHf46_eoQiz37uiHdKEkOGMsw0zkgwqNqtq7ELzSZefNQfq-xKg80y0HuuWZbnmhO1ieRotRSv3LsyzLCcP0Dy9rd7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174471498</pqid></control><display><type>article</type><title>A Small-Gain Approach for Nonpassive Bilateral Telerobotic Rehabilitation: Stability Analysis and Controller Synthesis</title><source>IEEE Electronic Library (IEL)</source><creator>Atashzar, Seyed Farokh ; Polushin, Ilia G. ; Patel, Rajnikant V.</creator><creatorcontrib>Atashzar, Seyed Farokh ; Polushin, Ilia G. ; Patel, Rajnikant V.</creatorcontrib><description>In this paper, the design of a novel bilateral telerobotic architecture for rehabilitation purposes is proposed and the related feasibility, stability, and control challenges are studied. The objective is to incorporate the supervision of a local/remote human physiotherapist into haptics-enabled rehabilitation systems and allow the therapist to provide nonpassive nonlinear assistive/resistive forces in response to the patient's movements. This can address a challenge of conventional software-based rehabilitation systems, i.e., limited capability in adjusting the therapy. To guarantee human-robot interaction safety, a new design framework and a stabilizing controller are developed based on the small-gain approach. System stability and transparency are analyzed in the presence of the nonpassive, nonlinear, and nonautonomous behavior of the terminals (the therapist and the patient) and time-varying delays for the case of remote and cloud-based therapy. Several practical considerations have been taken into account to match the clinical needs and minimize the implementation cost. Simulation studies, practical implementation, and experimental evaluations are presented.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2016.2623336</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control stability ; Delays ; Haptics ; Human engineering ; Medical treatment ; physical human–robot interaction ; Rehabilitation ; rehabilitation robotics ; Robots ; Safety ; stability ; Stability analysis ; Stability criteria ; Systems stability ; Telerobotics ; Therapy</subject><ispartof>IEEE transactions on robotics, 2017-02, Vol.33 (1), p.49-66</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-50bd91d20711d823fcda506e6a496359b8252b77bff5adbe6ff4e39534cb6fd33</citedby><cites>FETCH-LOGICAL-c291t-50bd91d20711d823fcda506e6a496359b8252b77bff5adbe6ff4e39534cb6fd33</cites><orcidid>0000-0001-8495-8440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7778241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7778241$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Atashzar, Seyed Farokh</creatorcontrib><creatorcontrib>Polushin, Ilia G.</creatorcontrib><creatorcontrib>Patel, Rajnikant V.</creatorcontrib><title>A Small-Gain Approach for Nonpassive Bilateral Telerobotic Rehabilitation: Stability Analysis and Controller Synthesis</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>In this paper, the design of a novel bilateral telerobotic architecture for rehabilitation purposes is proposed and the related feasibility, stability, and control challenges are studied. The objective is to incorporate the supervision of a local/remote human physiotherapist into haptics-enabled rehabilitation systems and allow the therapist to provide nonpassive nonlinear assistive/resistive forces in response to the patient's movements. This can address a challenge of conventional software-based rehabilitation systems, i.e., limited capability in adjusting the therapy. To guarantee human-robot interaction safety, a new design framework and a stabilizing controller are developed based on the small-gain approach. System stability and transparency are analyzed in the presence of the nonpassive, nonlinear, and nonautonomous behavior of the terminals (the therapist and the patient) and time-varying delays for the case of remote and cloud-based therapy. Several practical considerations have been taken into account to match the clinical needs and minimize the implementation cost. Simulation studies, practical implementation, and experimental evaluations are presented.</description><subject>Control stability</subject><subject>Delays</subject><subject>Haptics</subject><subject>Human engineering</subject><subject>Medical treatment</subject><subject>physical human–robot interaction</subject><subject>Rehabilitation</subject><subject>rehabilitation robotics</subject><subject>Robots</subject><subject>Safety</subject><subject>stability</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Systems stability</subject><subject>Telerobotics</subject><subject>Therapy</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKfvgi8Bnzvz1bTxrQ6dwnCwzeeStgnLyJqaZIP-93Z0-HTv5Z5zOfcHwCNGM4yReNmuVzOCMJ8RTiil_ApMsGA4QYzn10OfpiShSOS34C6EPUKECUQn4FTAzUFamyykaWHRdd7Jege18_DbtZ0MwZwUfDNWRuWlhVtllXeVi6aGa7WTlbEmymhc-wo3cRx7WLTS9sEEKNsGzl0bvbODD276Nu7UsLgHN1raoB4udQp-Pt63889kuVp8zYtlUhOBY5KiqhG4ISjDuMkJ1XUjU8QVl0xwmooqJympsqzSOpVNpbjWTFGRUlZXXDeUTsHzeHf46_eoQiz37uiHdKEkOGMsw0zkgwqNqtq7ELzSZefNQfq-xKg80y0HuuWZbnmhO1ieRotRSv3LsyzLCcP0Dy9rd7M</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Atashzar, Seyed Farokh</creator><creator>Polushin, Ilia G.</creator><creator>Patel, Rajnikant V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8495-8440</orcidid></search><sort><creationdate>201702</creationdate><title>A Small-Gain Approach for Nonpassive Bilateral Telerobotic Rehabilitation: Stability Analysis and Controller Synthesis</title><author>Atashzar, Seyed Farokh ; Polushin, Ilia G. ; Patel, Rajnikant V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-50bd91d20711d823fcda506e6a496359b8252b77bff5adbe6ff4e39534cb6fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Control stability</topic><topic>Delays</topic><topic>Haptics</topic><topic>Human engineering</topic><topic>Medical treatment</topic><topic>physical human–robot interaction</topic><topic>Rehabilitation</topic><topic>rehabilitation robotics</topic><topic>Robots</topic><topic>Safety</topic><topic>stability</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Systems stability</topic><topic>Telerobotics</topic><topic>Therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atashzar, Seyed Farokh</creatorcontrib><creatorcontrib>Polushin, Ilia G.</creatorcontrib><creatorcontrib>Patel, Rajnikant V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Atashzar, Seyed Farokh</au><au>Polushin, Ilia G.</au><au>Patel, Rajnikant V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Small-Gain Approach for Nonpassive Bilateral Telerobotic Rehabilitation: Stability Analysis and Controller Synthesis</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2017-02</date><risdate>2017</risdate><volume>33</volume><issue>1</issue><spage>49</spage><epage>66</epage><pages>49-66</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>In this paper, the design of a novel bilateral telerobotic architecture for rehabilitation purposes is proposed and the related feasibility, stability, and control challenges are studied. The objective is to incorporate the supervision of a local/remote human physiotherapist into haptics-enabled rehabilitation systems and allow the therapist to provide nonpassive nonlinear assistive/resistive forces in response to the patient's movements. This can address a challenge of conventional software-based rehabilitation systems, i.e., limited capability in adjusting the therapy. To guarantee human-robot interaction safety, a new design framework and a stabilizing controller are developed based on the small-gain approach. System stability and transparency are analyzed in the presence of the nonpassive, nonlinear, and nonautonomous behavior of the terminals (the therapist and the patient) and time-varying delays for the case of remote and cloud-based therapy. Several practical considerations have been taken into account to match the clinical needs and minimize the implementation cost. Simulation studies, practical implementation, and experimental evaluations are presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2016.2623336</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8495-8440</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2017-02, Vol.33 (1), p.49-66
issn 1552-3098
1941-0468
language eng
recordid cdi_proquest_journals_2174471498
source IEEE Electronic Library (IEL)
subjects Control stability
Delays
Haptics
Human engineering
Medical treatment
physical human–robot interaction
Rehabilitation
rehabilitation robotics
Robots
Safety
stability
Stability analysis
Stability criteria
Systems stability
Telerobotics
Therapy
title A Small-Gain Approach for Nonpassive Bilateral Telerobotic Rehabilitation: Stability Analysis and Controller Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Small-Gain%20Approach%20for%20Nonpassive%20Bilateral%20Telerobotic%20Rehabilitation:%20Stability%20Analysis%20and%20Controller%20Synthesis&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Atashzar,%20Seyed%20Farokh&rft.date=2017-02&rft.volume=33&rft.issue=1&rft.spage=49&rft.epage=66&rft.pages=49-66&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2016.2623336&rft_dat=%3Cproquest_RIE%3E2174471498%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174471498&rft_id=info:pmid/&rft_ieee_id=7778241&rfr_iscdi=true