A Small-Gain Approach for Nonpassive Bilateral Telerobotic Rehabilitation: Stability Analysis and Controller Synthesis
In this paper, the design of a novel bilateral telerobotic architecture for rehabilitation purposes is proposed and the related feasibility, stability, and control challenges are studied. The objective is to incorporate the supervision of a local/remote human physiotherapist into haptics-enabled reh...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2017-02, Vol.33 (1), p.49-66 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | IEEE transactions on robotics |
container_volume | 33 |
creator | Atashzar, Seyed Farokh Polushin, Ilia G. Patel, Rajnikant V. |
description | In this paper, the design of a novel bilateral telerobotic architecture for rehabilitation purposes is proposed and the related feasibility, stability, and control challenges are studied. The objective is to incorporate the supervision of a local/remote human physiotherapist into haptics-enabled rehabilitation systems and allow the therapist to provide nonpassive nonlinear assistive/resistive forces in response to the patient's movements. This can address a challenge of conventional software-based rehabilitation systems, i.e., limited capability in adjusting the therapy. To guarantee human-robot interaction safety, a new design framework and a stabilizing controller are developed based on the small-gain approach. System stability and transparency are analyzed in the presence of the nonpassive, nonlinear, and nonautonomous behavior of the terminals (the therapist and the patient) and time-varying delays for the case of remote and cloud-based therapy. Several practical considerations have been taken into account to match the clinical needs and minimize the implementation cost. Simulation studies, practical implementation, and experimental evaluations are presented. |
doi_str_mv | 10.1109/TRO.2016.2623336 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174471498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7778241</ieee_id><sourcerecordid>2174471498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-50bd91d20711d823fcda506e6a496359b8252b77bff5adbe6ff4e39534cb6fd33</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKfvgi8Bnzvz1bTxrQ6dwnCwzeeStgnLyJqaZIP-93Z0-HTv5Z5zOfcHwCNGM4yReNmuVzOCMJ8RTiil_ApMsGA4QYzn10OfpiShSOS34C6EPUKECUQn4FTAzUFamyykaWHRdd7Jege18_DbtZ0MwZwUfDNWRuWlhVtllXeVi6aGa7WTlbEmymhc-wo3cRx7WLTS9sEEKNsGzl0bvbODD276Nu7UsLgHN1raoB4udQp-Pt63889kuVp8zYtlUhOBY5KiqhG4ISjDuMkJ1XUjU8QVl0xwmooqJympsqzSOpVNpbjWTFGRUlZXXDeUTsHzeHf46_eoQiz37uiHdKEkOGMsw0zkgwqNqtq7ELzSZefNQfq-xKg80y0HuuWZbnmhO1ieRotRSv3LsyzLCcP0Dy9rd7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174471498</pqid></control><display><type>article</type><title>A Small-Gain Approach for Nonpassive Bilateral Telerobotic Rehabilitation: Stability Analysis and Controller Synthesis</title><source>IEEE Electronic Library (IEL)</source><creator>Atashzar, Seyed Farokh ; Polushin, Ilia G. ; Patel, Rajnikant V.</creator><creatorcontrib>Atashzar, Seyed Farokh ; Polushin, Ilia G. ; Patel, Rajnikant V.</creatorcontrib><description>In this paper, the design of a novel bilateral telerobotic architecture for rehabilitation purposes is proposed and the related feasibility, stability, and control challenges are studied. The objective is to incorporate the supervision of a local/remote human physiotherapist into haptics-enabled rehabilitation systems and allow the therapist to provide nonpassive nonlinear assistive/resistive forces in response to the patient's movements. This can address a challenge of conventional software-based rehabilitation systems, i.e., limited capability in adjusting the therapy. To guarantee human-robot interaction safety, a new design framework and a stabilizing controller are developed based on the small-gain approach. System stability and transparency are analyzed in the presence of the nonpassive, nonlinear, and nonautonomous behavior of the terminals (the therapist and the patient) and time-varying delays for the case of remote and cloud-based therapy. Several practical considerations have been taken into account to match the clinical needs and minimize the implementation cost. Simulation studies, practical implementation, and experimental evaluations are presented.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2016.2623336</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control stability ; Delays ; Haptics ; Human engineering ; Medical treatment ; physical human–robot interaction ; Rehabilitation ; rehabilitation robotics ; Robots ; Safety ; stability ; Stability analysis ; Stability criteria ; Systems stability ; Telerobotics ; Therapy</subject><ispartof>IEEE transactions on robotics, 2017-02, Vol.33 (1), p.49-66</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-50bd91d20711d823fcda506e6a496359b8252b77bff5adbe6ff4e39534cb6fd33</citedby><cites>FETCH-LOGICAL-c291t-50bd91d20711d823fcda506e6a496359b8252b77bff5adbe6ff4e39534cb6fd33</cites><orcidid>0000-0001-8495-8440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7778241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7778241$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Atashzar, Seyed Farokh</creatorcontrib><creatorcontrib>Polushin, Ilia G.</creatorcontrib><creatorcontrib>Patel, Rajnikant V.</creatorcontrib><title>A Small-Gain Approach for Nonpassive Bilateral Telerobotic Rehabilitation: Stability Analysis and Controller Synthesis</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>In this paper, the design of a novel bilateral telerobotic architecture for rehabilitation purposes is proposed and the related feasibility, stability, and control challenges are studied. The objective is to incorporate the supervision of a local/remote human physiotherapist into haptics-enabled rehabilitation systems and allow the therapist to provide nonpassive nonlinear assistive/resistive forces in response to the patient's movements. This can address a challenge of conventional software-based rehabilitation systems, i.e., limited capability in adjusting the therapy. To guarantee human-robot interaction safety, a new design framework and a stabilizing controller are developed based on the small-gain approach. System stability and transparency are analyzed in the presence of the nonpassive, nonlinear, and nonautonomous behavior of the terminals (the therapist and the patient) and time-varying delays for the case of remote and cloud-based therapy. Several practical considerations have been taken into account to match the clinical needs and minimize the implementation cost. Simulation studies, practical implementation, and experimental evaluations are presented.</description><subject>Control stability</subject><subject>Delays</subject><subject>Haptics</subject><subject>Human engineering</subject><subject>Medical treatment</subject><subject>physical human–robot interaction</subject><subject>Rehabilitation</subject><subject>rehabilitation robotics</subject><subject>Robots</subject><subject>Safety</subject><subject>stability</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Systems stability</subject><subject>Telerobotics</subject><subject>Therapy</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKfvgi8Bnzvz1bTxrQ6dwnCwzeeStgnLyJqaZIP-93Z0-HTv5Z5zOfcHwCNGM4yReNmuVzOCMJ8RTiil_ApMsGA4QYzn10OfpiShSOS34C6EPUKECUQn4FTAzUFamyykaWHRdd7Jege18_DbtZ0MwZwUfDNWRuWlhVtllXeVi6aGa7WTlbEmymhc-wo3cRx7WLTS9sEEKNsGzl0bvbODD276Nu7UsLgHN1raoB4udQp-Pt63889kuVp8zYtlUhOBY5KiqhG4ISjDuMkJ1XUjU8QVl0xwmooqJympsqzSOpVNpbjWTFGRUlZXXDeUTsHzeHf46_eoQiz37uiHdKEkOGMsw0zkgwqNqtq7ELzSZefNQfq-xKg80y0HuuWZbnmhO1ieRotRSv3LsyzLCcP0Dy9rd7M</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Atashzar, Seyed Farokh</creator><creator>Polushin, Ilia G.</creator><creator>Patel, Rajnikant V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8495-8440</orcidid></search><sort><creationdate>201702</creationdate><title>A Small-Gain Approach for Nonpassive Bilateral Telerobotic Rehabilitation: Stability Analysis and Controller Synthesis</title><author>Atashzar, Seyed Farokh ; Polushin, Ilia G. ; Patel, Rajnikant V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-50bd91d20711d823fcda506e6a496359b8252b77bff5adbe6ff4e39534cb6fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Control stability</topic><topic>Delays</topic><topic>Haptics</topic><topic>Human engineering</topic><topic>Medical treatment</topic><topic>physical human–robot interaction</topic><topic>Rehabilitation</topic><topic>rehabilitation robotics</topic><topic>Robots</topic><topic>Safety</topic><topic>stability</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Systems stability</topic><topic>Telerobotics</topic><topic>Therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atashzar, Seyed Farokh</creatorcontrib><creatorcontrib>Polushin, Ilia G.</creatorcontrib><creatorcontrib>Patel, Rajnikant V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Atashzar, Seyed Farokh</au><au>Polushin, Ilia G.</au><au>Patel, Rajnikant V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Small-Gain Approach for Nonpassive Bilateral Telerobotic Rehabilitation: Stability Analysis and Controller Synthesis</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2017-02</date><risdate>2017</risdate><volume>33</volume><issue>1</issue><spage>49</spage><epage>66</epage><pages>49-66</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>In this paper, the design of a novel bilateral telerobotic architecture for rehabilitation purposes is proposed and the related feasibility, stability, and control challenges are studied. The objective is to incorporate the supervision of a local/remote human physiotherapist into haptics-enabled rehabilitation systems and allow the therapist to provide nonpassive nonlinear assistive/resistive forces in response to the patient's movements. This can address a challenge of conventional software-based rehabilitation systems, i.e., limited capability in adjusting the therapy. To guarantee human-robot interaction safety, a new design framework and a stabilizing controller are developed based on the small-gain approach. System stability and transparency are analyzed in the presence of the nonpassive, nonlinear, and nonautonomous behavior of the terminals (the therapist and the patient) and time-varying delays for the case of remote and cloud-based therapy. Several practical considerations have been taken into account to match the clinical needs and minimize the implementation cost. Simulation studies, practical implementation, and experimental evaluations are presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2016.2623336</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8495-8440</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2017-02, Vol.33 (1), p.49-66 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_proquest_journals_2174471498 |
source | IEEE Electronic Library (IEL) |
subjects | Control stability Delays Haptics Human engineering Medical treatment physical human–robot interaction Rehabilitation rehabilitation robotics Robots Safety stability Stability analysis Stability criteria Systems stability Telerobotics Therapy |
title | A Small-Gain Approach for Nonpassive Bilateral Telerobotic Rehabilitation: Stability Analysis and Controller Synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Small-Gain%20Approach%20for%20Nonpassive%20Bilateral%20Telerobotic%20Rehabilitation:%20Stability%20Analysis%20and%20Controller%20Synthesis&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Atashzar,%20Seyed%20Farokh&rft.date=2017-02&rft.volume=33&rft.issue=1&rft.spage=49&rft.epage=66&rft.pages=49-66&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2016.2623336&rft_dat=%3Cproquest_RIE%3E2174471498%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174471498&rft_id=info:pmid/&rft_ieee_id=7778241&rfr_iscdi=true |