A Small-Gain Approach for Nonpassive Bilateral Telerobotic Rehabilitation: Stability Analysis and Controller Synthesis
In this paper, the design of a novel bilateral telerobotic architecture for rehabilitation purposes is proposed and the related feasibility, stability, and control challenges are studied. The objective is to incorporate the supervision of a local/remote human physiotherapist into haptics-enabled reh...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2017-02, Vol.33 (1), p.49-66 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the design of a novel bilateral telerobotic architecture for rehabilitation purposes is proposed and the related feasibility, stability, and control challenges are studied. The objective is to incorporate the supervision of a local/remote human physiotherapist into haptics-enabled rehabilitation systems and allow the therapist to provide nonpassive nonlinear assistive/resistive forces in response to the patient's movements. This can address a challenge of conventional software-based rehabilitation systems, i.e., limited capability in adjusting the therapy. To guarantee human-robot interaction safety, a new design framework and a stabilizing controller are developed based on the small-gain approach. System stability and transparency are analyzed in the presence of the nonpassive, nonlinear, and nonautonomous behavior of the terminals (the therapist and the patient) and time-varying delays for the case of remote and cloud-based therapy. Several practical considerations have been taken into account to match the clinical needs and minimize the implementation cost. Simulation studies, practical implementation, and experimental evaluations are presented. |
---|---|
ISSN: | 1552-3098 1941-0468 |
DOI: | 10.1109/TRO.2016.2623336 |