A Novel Flower Pollination Based Global Maximum Power Point Method for Solar Maximum Power Point Tracking
To maximize solar photovoltaic (PV) output under dynamic weather conditions, maximum power point tracking (MPPT) controllers are incorporated in solar PV systems. However, the occurrence of multiple peaks due to partial shading adds complexity to the tracking process. Even though conventional and so...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2017-11, Vol.32 (11), p.8486-8499 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To maximize solar photovoltaic (PV) output under dynamic weather conditions, maximum power point tracking (MPPT) controllers are incorporated in solar PV systems. However, the occurrence of multiple peaks due to partial shading adds complexity to the tracking process. Even though conventional and soft computing techniques are widely used to solve MPPT problem, conventional methods exhibit limited performance due to fixed step size, whereas soft computing techniques are restricted by insufficient randomness after reaching the vicinity of maximum power. Hence, in this paper, a new flower pollination algorithm (FPA) with the ability to reach global peak is proposed. Optimization process in FPA method performs global and local search in single stage and it is a key tool for its success in MPPT application. The ruggedness of the algorithm is tested with zero, weak, and strong shade pattern. Further, comprehensive performance estimation via simulation and hardware are carried out for FPA method and are quantified with conventional perturb and observe and particle swarm optimization (PSO) methods. Results obtained with FPA method show superiority in energy saving and proved to be economical. |
---|---|
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2016.2645449 |