A Novel Flower Pollination Based Global Maximum Power Point Method for Solar Maximum Power Point Tracking

To maximize solar photovoltaic (PV) output under dynamic weather conditions, maximum power point tracking (MPPT) controllers are incorporated in solar PV systems. However, the occurrence of multiple peaks due to partial shading adds complexity to the tracking process. Even though conventional and so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2017-11, Vol.32 (11), p.8486-8499
Hauptverfasser: Prasanth Ram, J., Rajasekar, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To maximize solar photovoltaic (PV) output under dynamic weather conditions, maximum power point tracking (MPPT) controllers are incorporated in solar PV systems. However, the occurrence of multiple peaks due to partial shading adds complexity to the tracking process. Even though conventional and soft computing techniques are widely used to solve MPPT problem, conventional methods exhibit limited performance due to fixed step size, whereas soft computing techniques are restricted by insufficient randomness after reaching the vicinity of maximum power. Hence, in this paper, a new flower pollination algorithm (FPA) with the ability to reach global peak is proposed. Optimization process in FPA method performs global and local search in single stage and it is a key tool for its success in MPPT application. The ruggedness of the algorithm is tested with zero, weak, and strong shade pattern. Further, comprehensive performance estimation via simulation and hardware are carried out for FPA method and are quantified with conventional perturb and observe and particle swarm optimization (PSO) methods. Results obtained with FPA method show superiority in energy saving and proved to be economical.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2016.2645449