Graph Regularized Non-Negative Low-Rank Matrix Factorization for Image Clustering

Non-negative matrix factorization (NMF) has been one of the most popular methods for feature learning in the field of machine learning and computer vision. Most existing works directly apply NMF on high-dimensional image datasets for computing the effective representation of the raw images. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2017-11, Vol.47 (11), p.3840-3853
Hauptverfasser: Li, Xuelong, Cui, Guosheng, Dong, Yongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-negative matrix factorization (NMF) has been one of the most popular methods for feature learning in the field of machine learning and computer vision. Most existing works directly apply NMF on high-dimensional image datasets for computing the effective representation of the raw images. However, in fact, the common essential information of a given class of images is hidden in their low rank parts. For obtaining an effective low-rank data representation, we in this paper propose a non-negative low-rank matrix factorization (NLMF) method for image clustering. For the purpose of improving its robustness for the data in a manifold structure, we further propose a graph regularized NLMF by incorporating the manifold structure information into our proposed objective function. Finally, we develop an efficient alternating iterative algorithm to learn the low-dimensional representation of low-rank parts of images for clustering. Alternatively, we also incorporate robust principal component analysis into our proposed scheme. Experimental results on four image datasets reveal that our proposed methods outperform four representative methods.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2016.2585355