A Comprehensive Analysis of Rough Soil Surface Scattering and Emission Predicted by AIEM With Comparison to Numerical Simulations and Experimental Measurements
Theoretical modeling plays a significant role as forward and inverse problem in active and passive microwave remote sensing. Understanding the validity and limitations of the models is essential for model refinements and, perhaps more importantly, model applications. Motivated by these, this paper p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2017-03, Vol.55 (3), p.1696-1708 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Theoretical modeling plays a significant role as forward and inverse problem in active and passive microwave remote sensing. Understanding the validity and limitations of the models is essential for model refinements and, perhaps more importantly, model applications. Motivated by these, this paper presents a comprehensive analysis of the scattering, both backscattering and bistatic scattering, and emission of rough soil surface predicted by the advanced integral equation model (AIEM), a well-established theoretical model. Numerically simulated data, covering a wide range of surface parameters, and in situ measurement data set of well-characterized bare soil surfaces were used to evaluate the performance of AIEM in predicting the scattering coefficient and microwave emissivity over a wide range of geometric parameters and ground surface conditions. The results show that the AIEM predictions are generally in good consistency with both numerical simulations and experiment measurements in terms of angular, frequency, and polarization dependences, except for some deviations in a few cases (e.g., at large incident angles and dry soil conditions). Extensive comparison confirms the effectiveness and practicability of AIEM for both scattering and emission of rough soil surface. Possible explanations for the discrepancy between the model prediction and data are given, together with suggestions for model usage and refinements. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2016.2629759 |