Data-Driven Methods for the Determination of Anterior-Posterior Motion in PET

Physiological motion combined with elongated scanning times in PET leads to image degradation and quantification errors. Correction approaches usually require 1-D signals that can be obtained with hardware-based or data-driven methods. Most of the latter are optimized or limited to capture internal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2017-02, Vol.36 (2), p.422-432
Hauptverfasser: Hess, Mirco, Buther, Florian, Schafers, Klaus P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Physiological motion combined with elongated scanning times in PET leads to image degradation and quantification errors. Correction approaches usually require 1-D signals that can be obtained with hardware-based or data-driven methods. Most of the latter are optimized or limited to capture internal motion along the superior-inferior (S-I) direction. In this work we present methods for also extracting anterior-posterior (A-P) motion from PET data and propose a set of novel weighting mechanisms that can be used to emphasize certain lines-of-response (LORs) for an increased sensitivity and better signal-to-noise ratio (SNR). The proper functioning of the methods was verified in a phantom experiment. Further, their application to clinical [18 F ]-FDG-PET data of 72 patients revealed that using the weighting mechanisms leads to signals with significantly higher spectral respiratory weights, i.e. signals with higher quality. Information about multi-dimensional motion is contained in PET data and can be derived with data-driven methods. Motion models or correction techniques such as respiratory gating might benefit from the proposed methods as they allow to describe the three-dimensional movements of PET-positive structures more precisely.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2016.2611022